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Lecture I: 
•Water suppression techniques 
 

Lecture II: 
•Variant HSQC experiments 
•Pulsed field gradient NMR 



Water Suppression Techniques 

[H2O]=55,000 mM  [Protein]< 5 mM 
 
[H2O]/[Protein]>11,000 

Water suppression 

Sample used throughout this lecture: 1 mM TEP-I in 90% H2O/10%D2O, pH 6.0, 290 K.  



Water Suppression Technique 

•Presaturation 
•Watergate 
•Water flip-back 
•Jump and return, 1-1, 1331 
•Suppression by coherence pathway rejection 
 
 



Water Suppression Technique in  
Protein NMR 

Labile, exchange with water 
(pH, structure, temperature dependent) 

Resonates near  
the water frequency 
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pH Dependence of Amide Proton Exchange Rates 

~330 times faster 

In practice: the pH value for a protein sample for NMR  
studies is kept below 7.5 to avoid fast exchange rates. 

Figure modified from p154 of John Cavanagh et al.,“Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 
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Presaturation 
90x 

Acqu 

d1 

cw 

•Apply a low power C.W. irradiation  
on water before the first 90 degree pulse,  
usually during the relaxation delay 
 
 
 
 
Parameter adjustment: 
Pulprog=zgpr 
Adjustment: pl9; power level for presaturation 

1D 1H spectra of TEP-I in 90%H2O/10%D2O 
, pH 6, 290 K. 



Drawback of Presaturation 
•Saturation transfer to exchangeable NH protons 
•Bleaching of signals near water 
•Large dispersive tail of water signal: tilted baseline  

Watergate (zgpgwg) 

Presat (zgpr) 

Watergate 

Presat 

1D 1H spectra of TEP-I, pH 6, 290 K. 



•A field-gradient pulse is a pulse or a period during which the 
magnetic field is made deliberately inhomogeneous. 
B=B0+Bg(z) 
 
 

•The magnetic field, generated by a gradient pulse, Bg(z) varies 
linearly along the Z-axis 
 

Bg(z)=zGz, where 
Gz: gradient strength (G/cm), Z: z-axis position 
 
•Viewing on the rotating frame, spins at different z-position 
acquire different phase (Larmor frequencies): φ(z)=γzGzτ,  
where φ=phase, γ: gyromagnetic ratio, τ: gradient duration 
 
 
•Actively shielded gradient coil reduces eddy current, and is 
now popular in multidimensional NMR spectroscopy. 

Pulsed Field Gradient (PFG) 

Z=0 

Bg 

-Bg 



Pulsed Field Gradient (PFG) 

Z=0 

Bg 

-Bg 

Gz -Gz 

A. Initially spins in each slice (isochromat) are “phase-coherence”. 
 
B. After a field-gradient pulse, the spins at different slice experience 

different magnetic field strength, and acquire different Larmor 
frequencies. The “phase-coherence between slices is now lost due to 
Larmor precession. 

 
C. The coherence can be refocused by another gradient pulse (gradient 

echo). 
A B C 



Pulsed Field Gradient (PFG) 

Z=0 

Bg 

-Bg 

Gz -Gz 

A B C 

Viewing from the Z-axis: 

(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999) 



WATERGATE 
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WATERGATE 

•A strong Z-gradient pulse can be used to destroy transverse 
magnetization. 
 

•A destroyed (dephased) magnetization can be refocused by 
another z-gradient pulse of the same amplitude but of opposite 
phase. (or use a 180 pulse in between the two identical z-
gradient pulse).  
 

•H2O: the two extra selective 90 pulse on water makes the 2nd z-
gradient pulse act as another defocus gradient pulse. 
 

•Protein signals: the 180 pulse makes the 2nd Z-gradient act as a 
refocus gradient.  
 
Ref: M. Piotto, V. Saudek & V. Sklenar, J. Biomol. NMR 2, 661 - 666 (1992) 
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WATERGATE 

• Parameter adjustment, Pulprog=zgpgwg 
• p11: pulse length for 90 degree shaped pulse 
• sp1: power level for 90 degree shaped pulse 
• spnam1: name of shaped pulse  
 
For example: set spnam1=Sinc1.1000, p11=1 msec, 
Minimize the water fid by adjusting sp1 in the “gs” utility.  
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WATERGATE V.S. Presaturation  

Watergate 
(pulprog=zgpgwg) 

Presat 
(pulprog=zgpr) 

Watergate 

Presat 

1D 1H spectra of TEP-I, pH 6, 290 K. 
Watergate (zgpgwg) 



3-9-19 WATERGATE 

• Off resonance DANTE excitation technique. 
• 3-9-19: 3α-τ-9α-τ-19α−τ-19α-τ-3α, where 26α=180, τ=delay. 

(This is also referred as “W3”.) 

90x 

d1 1H 

Gz 

Acqu 

3-9-19 

500 MHz 

Delay τ =1/(4 ∆υmax),  
where 2∆υmax=distance of next null (Hz).  
(The delay τ is field-dependent !!) 

Sklenar et al., J. Magn. Reson., A102, 241-245 (1993) 



3-9-19 WATERGATE 
Delay τ =1/(4 ∆υmax), where 2 ∆υmax= distance of next null (Hz).  
(The delay τ is field-dependent !!) 
 
For example: Have the center of NH region (i.e. 8.2 ppm) to be the center 
of maximal excitation region: 
 
τ=1/[4*(8.2-4.75)*600.13]=121 usec @600 MHz machine 
τ=1/[4*(8.2-4.75)*500.13]=145 usec @500 MHz machine 

Parameter adjustment: 
Pulprog=p3919 
Set pl18=pl1, p27=p1, p0=p1 
;d19: delay for binomial water suppression 
;d19 = (1/(2*d)), d = distance of next null (in Hz) 
 
Adjust d19 according to the magnetic field strength 
and where you want the center of maxima excitation 
to be.  



Parameter adjustment: 
Pulprog=*fp*, i.e. “hsqcetfpf3gp” calibrate the shaped pulse as 
describe in WATERGATE. 

Water Flip-back WATERGATE 
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•Water is aligned along the z axis before any z-gradient 
pulse (point “a”). So, it is not destroyed by the z-gradient 
pulse.  
 

•This reduces the signal loss of exchangeable protons due 
to attenuation of water signal (saturation transfer). 

S. Grzesiek and A. Bax, J. Am. Chem. Soc., 115, 12593-12594 (1993) 



Pulse Sequence for Observing Fast-
Exchanging Protons 

•Flip-back WATERGATE (marginal performance) 
•Jump and return 1-1 
•1-3-3-1 

N-H + *H2O N-*H + *H-O-H 

Imino protons in DNA, hydroxyl protons (-OH), Histidine 
side chain protons in proteins are usually in a fast 
exchange process with water. 



Jump and Return: 1-1 

• Water signal: “on resonance”, aligned to the “z” axis,  
• Protein signals: free to precess on the transverse plan 
• Peak Intensity: Ix Sin(Ωτ) 
• Delay τ = 1/(4∆υmax), ∆υmax=distance of maxima intensity 
• For example: To observe a peak at 14 ppm at 600 MHz,   
     τ=1/[4*(14-4.75)*600.13]=45 usec 
 
  Parameter adjustment:  Pulprog=p11 
  p1: 90 pulse, p0: 90 degree “return” pulse, adjust p0 to be slightly shorter 

than p1 (0.1-0.3 usec). 
  d19: d19= (1/(2*d)), d = distance of next null (in Hz) 
  
 

 
 

τ 

90y 90-y 

Acqu 
d1 

P. Plateau et and M. Gueron, al., J. Am. Chem. Soc. 
1982, 104, 7310-7311 



Binominal: 1-3-3-1 

Parameter adjustment: 
• Pulpro=p1331 
• d19: delay for binomial water suppression 
• d19 = (1/d), d = distance of next null (in Hz)=2*distance of maximal 

intensity 
• d19=τ as defined above 

1-3-3-1 
τ 

a*P1 

Acqu 
d1 τ τ 

b*P1 
b*P1 a*P1 

a=0.125, b=0.375 

•Delay τ = 1/(2∆υmax)=1/d,  
∆υmax=distance of maximal intensity 
d=distance of next null 
 

•For example: To observe a peak at 14 
ppm at 600 MHz,   
τ=1/[2*(14-4.75)*600.13]=90 usec 

P.J. Hore, J. Magn. Reson., 55, 283-300 (1983) 



Jump-Return 1-1 and Binominal 1-3-3-1 

1-1 

1331 

1331 

1-1 1331 

Binomial excitation profiles of 1-1 and 1-3-3-1. 
 

John Cavanagh et al., page 154, “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 



Jump-Return 1-1 and Binominal 1-3-3-1 

Both are for observing fast exchanging protons. 
•1-3-3-1: Better water suppression (higher receiver gain),  
but with offset-dependent phase distortion 
 
•1-1: low receiver gain, the dispersive tail of water interferes  
with the signals of interest. 

1-3-3-1 
(rg=656) 

1-1 
rg=64 



What are you trying to detect ? 

1-3-3-1 

WATERGATE 

Presaturation 



Water Suppression via Coherence 
Pathway Rejection 

Coherence pathway selected by gradients: 
 
In a gradient selection experiment (echo/antiecho), the water 
coherence is not “refocused” by the refocus gradient (therefore, is 
not selected), this naturally suppression the water signal.   
 
Example: cosydfetgp.1, hsqcetf3gp 

Figure from John Cavanagh et al.,“Protein NMR Spectroscopy: Principles and Practice”, Academic Press (1995) 



Practical Implementation: 1D, 2D and 3D 

Fast exchangeable proton (His sidechain, -OH): 1-1 (good for 2D), 
1-3-3-1 (not suitable for 2D, 3D). 
 
Exchangeable NH: Water-flip-back HSQC, Fast-HSQC. 
 
Signals (Hα) near water: (i.e. TOCSY, COSY) WATERGATE with 
selective pulse, echo-antiecho PFG. 
 



Variant HSQC Experiments 

by 
Wen-Jin (Winston) Wu 

 
National Program for Genomic Medicine High-Field NMR Core Facility,  

The Genomic Research Center, Academia Sinica 

C

O

N

H

Cα

H Cβ

HH

C

O

N

H

90

140

557-1115

35

4-9C

O

N

H

Cα

H Cβ

HH

C

O

N

H

90

140

557-1115

35

4-9



Coherence Order 

• Zero quantum coherence: IzSz…etc 

• Single quantum coherence: IxSz, IySz, IzSy …etc 
• Double quantum coherence: IxSx, IxSy…etc 
• Triple quantum coherence: IxKxSx, IxKxSy …etc 

 
• HSQC: Hetero-nuclear single quantum coherence. 
• HMQC:Hetero-nuclear multiple quantum 

coherence. 
 

 
 
 



Scalar Coupling (J-Coupling) 

 
 

•Scalar couplings (J-couplings) are used as basic 
magnetization transfer in correlation spectroscopy. 
 

•The efficiency of transfer depends on the magnitude of J-
coupling constants. 
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Coupling Constant in proteins. 



HMQC VS HSQC 
• HMQC:Hetero-nuclear multiple 

quantum coherence. Schem a. 
• 2τ=2*(1/4*JIS) 
• N-H: 2*[1/(4*90)]=5.5 ms 
• C-H: 2*[1/(4*140)]=3.6 ms 

 
 

•   HSQC: Hetero-nuclear single 
quantum coherence. Scheme b. 
•Intensity: 2IzSysin(2πJISt). 
Maximal intensity with t=1/4JIS 

•    τ=1/4*JIS 

•    N-H: 1/(4*90)=2.7 ms 
•    C-H: 1/(4*140)=1.8 ms 
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HSQC: Adjustment of J-Evolution Time 

    J=cnst4 =  60,   70,   80,   90,  100, 110, 120, 130, 140, 150 Hz  
(The fist t1 of a HSQC for the protein TEP-I (~20 KDa),  

pH 6.0, 290 K, 600 MHz proton field strength. 
Pulprog=hsqcf3etgpsi2) 

τ=(1/4JIS) 

To compensate for relaxation loss, adjust the length of delay according to  
correlation time (i.e. molecular weight) of your proteins. 

Page 412, John Cavanagh et al., “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 



Constant-Time HSQC 
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•Spectral resolution can be compromised by passive J-coupling. 
•The resolution of a 1H, 13C correlation (i.e. HSQC) can be enhanced 
by removing the passive C-C J-coupling (35 Hz) using a “constant 
time” scheme. 

Page 412, John Cavanagh et al., “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 



Resolution Enhancement by the 
Constant Time Scheme 

1H, 13C-HSQC Constant time  
1H, 13C-HSQC 

No C-C J-coupling 
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Page 439, John Cavanagh et al., “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 



Sensitivity Improvement in HSQC 

HSQC 
Only either 2IxSy or 2IzSx is 
refocused. Pulprog=hsqcf3ph 

A. 
 
 
 
 
 
B. 
 
 
 
 
 
 
C. 

Page 441 of John Cavanagh et al., page 154, “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 
  

PFG-PEP-HSQC:  
Pulprog=hsqcetf3gpsi 
Echo-antiecho: 
gpz3: 80% 
gpz8: 8.1% for N-15, 20.1% for C-13 
Relaxation will compromise sensitivity 
of this experiment.  

PEP-HSQC 
(PEP: preservation of equivalent  pathway) 
Both 2IxSy and 2IzSx are refocused. 
(2)1/2 increase in sensitivity without 
considering relaxation  



WATERGATE- 
HSQC 
(pulprog= 
hsqcf3gpph19) 

Flip-back  
WATERGATE- 
HSQC 
(similar Pulprog 
=hsqcetfpf3gp) 
 

Fast-HSQC 
(Pulprog= 
fhsqcf3gpph) 

HSQC With Different Water Suppression Schemes  

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995) 

1D HSQC of 1.5 mM SNase (pH 7.4).  
1 sec recycling delay 

Water is kept along the Z-axis in both B and C before the final dephasing sequence  
to avoid saturation transfer. 



HSQC With Different Water Suppression Schemes 

WATERGATE- 
HSQC 
 

Flip-back  
WATERGATE- 
HSQC 

FHSQC 
(Fast-HSQC) 

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995) 

Series of 1D HSQC spectra for 10 mM 15N-N-acetylalanine  
(pH 9.2) with different recycling delay. 



Practical Usage of Experiments Containing HSQC 

•Saturation Transfer: avoid saturating water signal, especially 
at neutral pH. 
  
•Relaxation: Extra pulse sequence length in “sensitivity 
enhanced” HSQC can cause sensitivity loss due to T2 
relaxation. This is particularly serious for large proteins (>20 
kDa).  



Transverse Relaxation-Optimized 
Spectroscopy (TROSY)  

• Constructive canceling of transverse relaxation caused by 
chemical shift anisotropy (CSA) and by dipole-dipole 
coupling at high magnetic field. 
 

• Each of the four multiplet components of 15N-1H correlation 
components has different relaxation rates (line width). 
 

• Select only the narrowest component (1 out of 4). 



TROSY at 750 MHz 

Decoupled HSQC 
(during t1 &t2) 
 
 
 
 
 
None-decoupling  
HSQC 
 
 
 
 
 
 
 
 
TROSY-HSQC 

Pervushin et al. v94, p12366,1997 PNAS USA 

Linewidrh: 
60% reduction  
in 1H,  
40%reduction  
in 15N 
 
 
If perdeuterated: 
Expected reduction  
40-fold for 1H &  
10-fold for 15N 

M.W~17 KDa  



The Resolution Power of TROSY 

45 kDa, 750 MHz 

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601 



TROSY Effect is Field-Dependent  

Linewidth 

Magnetic field strength 

800 (kDa) 

150 kDa 
50 kDa 

Optimal field strength: 1 GHz for NH;  
600 MHz for aromatic moieties (500-800 MHz). 

800 (kDa) 

150 kDa 50 kDa 

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601 



TROSY 
TROSY-HSQC 

HSQC 

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601 

Pervushin et al. v94, p12366, 1997 PNAS 

Pulprog=trosyf3gpph19, trosyf3gpphsi19 



Some Notes on TROSY 

• Intrinsic sensitivity loss by just selecting ¼ component. 
(worth doing it when T2 relaxation is fast for large proteins). 
 

• At the present time, at least 8-step of phase cycling is 
required to achieve coherence pathway selection. 
 

• TROSY effect is field strength-dependent. Optimal field 
strength: 1 GHz for NH; 600 MHz for aromatic moieties (500-
800 MHz). 
 

• TROSY effect is well suited for large molecule. 

“NMR analysis of a 900K GroEL-GroES complex.” Flaux et al., Nature V. 418, 11, p207 
(2003)  



Pulsed Field Gradient (PFG) NMR 

•Solvent suppression. 
 

•Artifact suppression. 
Have the coherence of interested align along the z-axis,  
then destroy any unwanted signals left on the transverse plan. 
 

•Coherence pathway selection. 
Select coherence pathway of interested in one single scan 
instead of 8 or 16 as in phase cycling.  
More number of increments can be used in 3D, 4D experiment: 
higher resolution. 
 

•Diffusion measurement to study aggregation.  



•A field-gradient pulse is a pulse or a period during which the 
magnetic field is made deliberately inhomogeneous. 
B=B0+Bg(z) 
 
•The magnetic field, generated by a gradient pulse, Bg(z) varies 
linearly along the Z-axis 
Bg(z)=zGz, where 
Gz: gradient strength (G/cm), Z: z-axis position 
 
•Viewing on the rotating frame, spins at different z-position 
acquire different phase (Larmor frequencies):  
φ(z)=γzGzt,  
where γ: gyromagnetic ratio, τ: gradient duration 
 
•A coherence can be dephased by a strong pulse field gradient. 
•A dephased coherence can be refocused by a refocus-gradient 
providing the “overall phase change “ is zero. 
φi+ φf=0 ;Coherence refocused. 
φi+ φf ≠ 0 ;Coherence dephased. 

 

Pulsed Field Gradient 

Z=0 

Bg 

-Bg 



Pulsed Field Gradient (PFG) 

Z=0 

Bg 

-Bg 

Gz -Gz 

A B C 

Viewing from the Z-axis: 

(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999) 



Coherence Pathway Pathway Selection by PFG 

Φi=Gi Pi γi (phase acquired after the first gradient) 
Φf=Gf Pf γf (phase acquired after the second gradient) 
 
Gi=siBgτi (gradient term) Pi: coherence order, γ:gyromagnetic ratio 
τi:gradient pulse length, Si: shape factor of a gradient pulse (what 
kind of shaped pulse). 
 
Coherence Selection by Gradient: 
 
If Φi+ Φf=0 ;Coherence is refocused (selected). 
  (gradient echo) 
If Φi+ Φf≠ 0 ;Coherence is dephased (rejected). 

Example: Selection of the coherence pathway p=2 to p=-1 by PFG. 
Φi=1*2*1 + 2*(-1)*1=0 

Figure from Page 225 of John Cavanagh et al., page 154, “Protein NMR Spectroscopy:  
Principles and Practice”, Academic Press (1995) 



PFG-NMR: Coherence Selection, Artifact Suppression   

A. Bax & S. Pochapsky, J. Magn. Reson. 99, 638-643 (1992)  

Example “a”: Destroy the “unwanted” components with a Z-gradient pulse when 
they are on the transverse plan and the component of interest is a long the z-axis. 

a 



Diffusion by PFG-NMR 

I(2τ)=I0*exp[-(γδG)2(∆-δ/3)Ds 
γ: gyromagnetic ratio; δ: gradient duration;  
G: gradient strength, ∆: time between gradient pulse,  
I0: signal intensity in the absence of gradient 
 
Monitor signal intensity as a function of either gradient duration 
or gradient strength. Ds can then be obtained by nonlinear-squares  
fits to the above equation. 

Ds=kT/6πηrs  

Stejskal & Tanner, J. Chem. Phy. 42, 288 (1965) 

Jones et al. J. Biomol. NMR, 10, 199-203 (1997) 

Different size of molecules have different self-diffusion coefficients Ds. 

rs: hydrodynamic radius  
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