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Lecture I:
*\Water suppression techniqgues

Lecture Il
*Variant HSQC experiments
Pulsed field gradient NMR



[H,0]=55,000 mM [Protein]< 5 mM

[H,O]/[Protein]>11,000

Water suppression
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Sample used throughout this lecture: 1 mM TEP-1 in 90% H,0/10%D,0, pH 6.0, 290 K.



*Presaturation

\Watergate

*Water flip-back

Jump and return, 1-1, 1331

eSuppression by coherence pathway rejection
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FIGURE 3.26 Intrinsic backbone amide proton exchange rates calculated accord-
ing to Connelly et al. (63). The intrinsic exchange rate, k;,,, , is shown for exchange
of a backbone amide proton with (—) H,O or (---) D,0 as a function of pH or
pD. The pD values are corrected for isotope effects; uncorrected pH meter readings
would be 0.4 units smaller.

Figure modified from p154 of John Cavanagh et al.,*“Protein NMR Spectroscopy:
Principles and Practice™, Academic Press (1995)

In practice: the pH value for a protein sample for NMR
studies is kept below 7.5 to avoid fast exchange rates.



CW

dl

*Apply alow power C.W. irradiation f‘f
on water before the first 90 degree pulse, \JA

usually during the relaxation delay

17 16 15 14 13 12 11 10 ¢ 8 7 6 S5 4 3 2 1 0 -1 ppm

1D 'H spectra of TEP-I in 90%H,0/10%D,0
, pH 6, 290 K.

Parameter adjustment:
Pulprog=zgpr
Adjustment: pl9; power level for presaturation




Drawback of Presaturation

eSaturation transfer to exchangeable NH protons

*Bleaching of signals near water

sLarge dispersive tail of water signal: tilted baseline !

1D 'H spectra of TEP-I, pH 6, 290 K.
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A field-gradient pulse is a_BuIse ora ﬁeriod during which the
magnetic field is made deliberately innomogeneous.

B=By+B(2)

*The magnetic field, generated by a gradient pulse, B,(z) varies
linearly along the Z-axis

B,(2)=zG,, where 9
G,: gradient strength (G/cm), Z: z-axis position

*Viewing on the rotating frame, spins at different z-position

acquire different phase (Larmor frequencies): §(2)=yzG,,
where ¢=phase, y: gyromagnetic ratio, t: gradient duration

*Actively shielded gradient coil reduces eddy current, and is
now popular in multidimensional NMR spectroscopy.



Initially spins in each slice (isochromat) are “phase-coherence”.

After a field-gradient pulse, the spins at different slice experience
different magnetic field strength, and acquire different Larmor
frequencies. The “phase-coherence between slices is now lost due to
Larmor precession.

The coherence can be refocused by another gradient pulse (gradient
echo).
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Viewing from the Z-axis:
X
1 |
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X X X X X
3 N Ny 2\
(CECR-HCGRE
b b b b

(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999)
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*A strong Z-gradient pulse can be used to destroy transverse
magnetization.

*A destroyed (dephased) magnetization can be refocused by
another z-gradient pulse of the same amplitude but of opposite
phase. (or use a 180 pulse in between the two identical z-
gradient pulse).

*H,0O: the two extra selective 90 pulse on water makes the 2nd z-
gradient pulse act as another defocus gradient pulse.

*Protein signals: the 180 pulse makes the 2nd Z-gradient act as a
refocus gradient.

Ref: M. Piotto, V. Saudek & V. Sklenar, J. Biomol. NMR 2, 661 - 666 (1992)



« Parameter adjustment, Pulprog=zgpgwg
 pll: pulselength for 90 degree shaped pulse
« spl: power level for 90 degree shaped pulse
« spnaml: name of shaped pulse

For example: set spnam1=Sinc1.1000, p11=1 msec,
Minimize the water fid by adjusting splin the “gs” utility.




~ Watergate (zgpgwg)
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0 -1 ppm

Watergate
(pulprog=zgpgwag)

.

Presat
(pulprog=zgpr)
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90, 3-9-19

G, [ a

Sklenar et al., J. Magn. Reson., A102, 241-245 (1993)

« Off resonance DANTE excitation technique.
e 3-9-19: 3a-1-90a-t-190—1-19a-1-3a,, Where 26a=180, t=delay.
(This is also referred as “W3”.)

Delay t =1/(4 Av,,,.),
041 where 2Av . =distance of next null (Hz).
- (The delay tis field-dependent 1)
| (© W3
0.0 +
- T - 1 - 1 - 1 - T °
3000 2000 1000 0 -1000 -2000 -3000

500 MHz Frequency Offset (Hz)



Delay t =1/(4 Av,,,,), Wwhere 2 Av,,,= distance of next null (Hz).
(The delay 7 is field-dependent !!)

For example: Have the center of NH region (i.e. 8.2 ppm) to be the center
of maximal excitation region:

t=1/[4*(8.2-4.75)*600.13]=121 usec @600 MHz machine
t=1/[4*(8.2-4.75)*500.13]=145 usec @500 MHz machine

Parameter adjustment: "

Pulprog=p3919 )]

Set pl18=pl1, p27=p1, pO=pl L] /

;d19: delay for binomial water suppression L; | \/

;d19 = (1/(2*d)), d = distance of next null (in Hz) / ,/
@ W /

Adjust d19 according to the magnetic field strength R S B A
and where you want the center of maxima excitation Frquency Offe (1)
to be.




S. Grzesiek and A. Bax, J. Am. Chem. Soc., 115, 12593-12594 (1993)

*Water is aligned along the z axis before any z-gradient
pulse (point “a”). So, it is not destroyed by the z-gradient
pulse.

*This reduces the signal loss of exchangeable protons due
to attenuation of water signal (saturation transfer).

Parameter adjustment:
Pulprog=*fp*, i.e. “hsqcetfpf3gp” calibrate the shaped pulse as
describe in WATERGATE.




N‘H + *Hzo

N-*H + *H-O-H

D ——

Imino protons in DNA, hydroxyl protons (-OH), Histidine
side chain protons in proteins are usually in a fast
exchange process with water.

*Flip-back WATERGATE (marginal performance)
Jump and return 1-1
¢1-3-3-1



9, 90,

dl I T [> -
P. Plateau et and M. Gueron, al., J. Am. Chem. Soc.
1982, 104, 7310-7311

T
L&) -1 ppm

Water signal: “on resonance”, aligned to the “z” axis,
Protein signals: free to precess on the transverse plan
Peak Intensity: I, Sin(Qr)

Delay t = 1/(4Av,,,,,), Av,=distance of maxima intensity
For example: To observe a peak at 14 ppm at 600 MHz,
1=1/[4*(14-4.75)*600.13]=45 usec

Parameter adjustment:. Pulprog=pl1l

pl: 90 pulse, p0: 90 degree “return” pulse, adjust p0 to be slightly shorter
than p1 (0.1-0.3 usec).

d19: d19= (1/(2*d)), d = distance of next null (in Hz)




b*P1
a*Pl  b*P1  a*Pl

a=0.125, b=0.375
’ 1-3-3-1
d1 Ir I rI : L’

P.J. Hore, J. Magn. Reson., 55, 283-300 (1983)

*Delay 1 = 1/(2Av,,,,)=1/d,

Av, . ~=distance of maximal intensity u
d=distance of next null —/\-JJ lU\«-.

T
ppm

*For example: To observe a peak at 14
ppm at 600 MHz,
t=1/[2*(14-4.75)*600.13]=90 usec

Parameter adjustment:

e Pulpro=pl331

« d19: delay for binomial water suppression

e d19=(1/d), d = distance of next null (in Hz)=2*distance of maximal
intensity

« d19=rt as defined above




1.0
0.8
> 0.6
0.4
0.2

0.0
100

-100
-200
-300
-400
-500
-600

Phase

Binomial excitation profiles of 1-1 and 1-3-3-1.

John Cavanagh et al., page 154, “Protein NMR Spectroscopy:
Principles and Practice”, Academic Press (1995)
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Both are for observing fast exchanging protons.
«1-3-3-1: Better water suppression (higher receiver gain),
but with offset-dependent phase distortion

*1-1: low receiver gain, the dispersive tail of water interferes
with the signals of interest.

1-3-3-1 1-1
(rg=656) rg=64

N

S \

r T T T T T T T T T T T T T T T T T
17 1 15 14 13 12 11 10 & ] 7 6 5 4 3 2 1

f T T T T T T T T T T T T T T T T T T T
17 16 15 14 13 12 11 10 9 8 7 [ 5 4 3 2 1 o Ppm



1-3-3-1 Presaturation

f T T T T T T T T T T T T 1
17 16 15 14 13 12 11 10 9 a8

WATERGATE




Coherence pathway selected by gradients:

In a gradient selection experiment (echo/antiecho), the water
coherence is not “refocused” by the refocus gradient (therefore, is
not selected), this naturally suppression the water signal.

Example: cosydfetgp.1, hsqcetf3gp "

—

t 2t
field gradients

5 \
° \

Figure from John Cavanagh et al.,*“Protein NMR Spectroscopy: Principles and Practice”, Academic Press (1995)



Fast exchangeable proton (His sidechain, -OH): 1-1 (good for 2D),
1-3-3-1 (not suitable for 2D, 3D).

Exchangeable NH: Water-flip-back HSQC, Fast-HSQC.

Signals (H,) near water: (i.e. TOCSY, COSY) WATERGATE with
selective pulse, echo-antiecho PFG.
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e Zero quantum coherence: LS, ...etc

* Single quantum coherence: IS, I|S, I,S, ...etc
« Double quantum coherence: IS, S, ...etc
 Triple quantum coherence: LK,S, L|K,S, ...etc

« HSQC: Hetero-nuclear single quantum coherence.

e HMQC:Hetero-nuclear multiple quantum
coherence.
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Coupling Constant in proteins.

eScalar couplings (J-couplings) are used as basic
magnetization transfer in correlation spectroscopy.

*The efficiency of transfer depends on the magnitude of J-
coupling constants.



HMQC:Hetero-nuclear multiple
guantum coherence. Schem a.

2T=0%(1/4%],)
N-H: 2*[1/(4*90)]=5.5 ms
C-H: 2*[1/(4*140)]=3.6 ms

X
| I I >
; o fe
i 2 é g 02
e A
5 E 2J 215 EZJ 2t decouple HMQC

S 2.2 decouple

o HSQC: Hetero-nuclear single
guantum coherence. Scheme b.
eIntensity: 21,S,sin(2nJ;st).
Maximal intensity with t=1/4J,
o 1=1/4*]

* N-H: 1/(4*90)=2.7 ms
 C-H:1/(4*140)=1.8 ms

4 Passive H-H coupling in HMQC
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Page 412, John Cavanagh et al., “Protein NMR Spectroscopy:
Principles and Practice”, Academic Press (1995)

t (1/4J IS) J=cnst4 = 60, 70, 80, 90, 100, 110, 120, 130, 140, 150 Hz
(The fist t1 of a HSQC for the protein TEP-I (~20 KDa),
pH 6.0, 290 K, 600 MHz proton field strength.
Pulprog=hsqcf3etgpsi2)

To compensate for relaxation loss, adjust the length of delay according to
correlation time (i.e. molecular weight) of your proteins.
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Page 412, John Cavanagh et aIT, “Protein NMR Spectroscopy:
Principles and Practice”, Academic Press (1995)

*Spectral resolution can be compromised by passive J-coupling.
*The resolution of a 1H, 13C correlation (i.e. HSQC) can be enhanced
by removing the passive C-C J-coupling (35 Hz) using a “constant
time” scheme.



1H, 83C-HSQC

Constant time
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Page 439, John Cavanagh et al., “Protein NMR Spectroscopy:
Principles and Practice™, Academic Press (1995)
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decouple

1 ¢1\§§ ¢2 b2 b3 03

i | decouple

>

HSQC
Only either 21,S, or 21,S, is
refocused. Pulprog=hsqcf3ph

PEP-HSQC

(PEP: preservation of equivalent pathway)
Both 2I,S, and 2I,S, are refocused.
(2)Y2increase in sensitivity without
considering relaxation

decouple

PFG-PEP-HSQC:
Pulprog=hsqcetf3gpsi
Echo-antiecho:

gpz3: 80%

gpz8: 8.1% for N-15, 20.1% for C-13
Relaxation will compromise sensitivity
of this experiment.

Page 441 of John Cavanagh et al., page 154, “Protein NMR Spectroscopy:

Principles and Practice™, Academic Press (1995)
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WATERGATE-
HSQC

(pulprog=
hsqcf3gpphl19)

Flip-back
WATERGATE-
HSQC

(similar Pulprog
=hsqcetfpf3gp)

Fast-HSQC
(Pulprog=
fhsqgcf3gpph)

W
W

! I I T T

10.0 9.0 8.0 7.0 6.0
ppm
1D HSQC of 1.5 mM SNase (pH 7.4).
1 sec recycling delay

Water is kept along the Z-axis in both B and C before the final dephasing sequence

to avoid saturation transfer.

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995)
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Series of 1D HSQC spectra for 10 mM >N-N-acetylalanine

(pH 9.2) with different recycling delay.
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WATERGATE-
HSQC
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(Fast-HSQQC)

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995)



eSaturation Transfer: avoid saturating water signal, especially
at neutral pH.

*Relaxation: Extra pulse sequence length in “sensitivity
enhanced” HSQC can cause sensitivity loss dueto T,
relaxation. This is particularly serious for large proteins (>20
kDa).



 Constructive canceling of transverse relaxation caused by
chemical shift anisotropy (CSA) and by dipole-dipole
coupling at high magnetic field.

e Each of the four multiplet components of 1°N-1H correlation
components has different relaxation rates (line width).

o Select only the narrowest component (1 out of 4).



50 0 50 Av[Hz]
AV | | | ml
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I | |
108 107 106
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n
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108 107 106 132 _ 131
<« 0 (Hppm] < o; (*N)[ppm]

Linewidrh:
60% reduction
in 1H,
40%reduction
in 1°N

If perdeuterated:
Expected reduction
40-fold for 1H &
10-fold for 1°N

M.W~17 KDa

Pervushin et al. v94, p12366,1997 PNAS USA
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4 50

Av(1HN)
[Hz] .
320
30 | 800 (kDa)
Linewidth
20 _T::(HS}
0
10 | !
\2 150 kDa U 50 kDa
olL. T 0 . : .
500 1000 1500 500 1000 1500
V('H) [MHz] V('H) [MHz]

Magnetic field strength

Optimal field strength: 1 GHz for NH;
600 MHz for aromatic moieties (500-800 MHz).

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601



TROSY-HSQC Pulprog=trosyf3gpph1l9, trosyf3gpphsil9

U Pervushin et al. v94, p12366, 1997 PNAS

L =
HSQC
S Y

Caurranl Opnicr m Structural Basdogy

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601



* Intrinsic sensitivity loss by just selecting ¥ component.
(worth doing it when T, relaxation is fast for large proteins).

 Atthe presenttime, at least 8-step of phase cycling is
required to achieve coherence pathway selection.

« TROSY effectis field strength-dependent. Optimal field
strength: 1 GHz for NH; 600 MHz for aromatic moieties (500-
800 MHz).

« TROSY effect is well suited for large molecule.

“NMR analysis of a 900K GroEL-GroES complex.” Flaux et al., Nature V. 418, 11, p207
(2003)



*Solvent suppression.

sArtifact suppression.
Have the coherence of interested align along the z-axis,
then destroy any unwanted signals left on the transverse plan.

Coherence pathway selection.

Select coherence pathway of interested in one single scan
iInstead of 8 or 16 as in phase cycling.

More number of increments can be used in 3D, 4D experiment:
higher resolution.

Diffusion measurement to study aggregation.



A field-gradient pulseis a pulse or a period during which the
magnetic field is made deliberately inhomogeneous.
B=By+B4(2)

*The magnetic field, generated by a gradient pulse, Bg(z) varies
linearly along the Z-axis

B,(2)=zG,, where

G,: gradient strength (G/cm), Z: z-axis position

*Viewing on the rotating frame, spins at different z-position
acquire different phase (Larmor frequencies):

0(2)=yzG,t,
where vy: gyromagnetic ratio, t: gradient duration

*A coherence can be dephased by a strong pulse field gradient.
*A dephased coherence can be refocused by a refocus-gradient
providing the “overall phase change “ is zero.

¢+ =0 ;Coherence refocused.
¢+ o;# 0 ;Coherence dephased.
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Viewing from the Z-axis:
X
1 |
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(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999)




®.=G,; P;y; (phase acquired after the first gradient)
®=G; P;y; (phase acquired after the second gradient)

G;=s;Byt; (gradient term) P;: coherence order, y:gyromagnetic ratio
t;:gradient pulse length, S;: shape factor of a gradient pulse (what

kind of shaped pulse). |
Coherence Selection by Gradient: @1 EEQT
field gradients
If @+ ®~=0 ;Coherence is refocused (selected). +f \
(gradient echo) " \
If @+ &0 ;Coherence is dephased (rejected). -1 \

-2

Example: Selection of the coherence pathway p=2 to p=-1 by PFG.
®,=1*2*1 + 2*(-1)*1=0

Figure from Page 225 of John Cavanagh et al., page 154, “Protein NMR Spectroscopy:
Principles and Practice”, Academic Press (1995)



180° 180°

. | L |

Gradient : : E .: E E
p— . N m B

FiG. 1. Examplc§ of different applications of pulsed field gradients in heteronuclear NMR. (a) Selection
of an /.S, intermediate, (b) selection of transverse S-spin magnetization which is being refocused by a 180°

pulse, and (c) elimination of transverse S-spin components caused by an imperfect 180° () decoupling
pulise.

903 (1) 90y (S)
LS, ~ LS., [1a]
Unwanted magnetization is associated with terms such as

905 (1) 90, (S)
LS, ——— :: ) ———1,S, [1b]

90, 7 “\90,(5)
_\Iy/ —1, [lc]

or

I — =1, — — I,. [1d]

Example “a”: Destroy the “unwanted” components with a Z-gradient pulse when
they are on the transverse plan and the component of interest is a long the z-axis.

A. Bax & S. Pochapsky, J. Magn. Reson. 99, 638-643 (1992)



H: J I

| 6| Jones et al. J. Biomol. NMR, 10, 199-203 (1997)

| A |
Stejskal & Tanner, J. Chem. Phy. 42, 288 (1965)

D.=kT/6mnr, I',: hydrodynamic radius

Different size of molecules have different self-diffusion coefficients D..

o=l exp- (Y3 G)(A-8/3)D,

v: gyromagnetic ratio; 6. gradient duration;
G: gradient strength, A: time between gradient pulse,
l,: signal intensity in the absence of gradient

Monitor signal intensity as a function of either gradient duration

or gradient strength. D, can then be obtained by nonlinear-squares
fits to the above equation.
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