2023 NMR Users Training (II)

Basic NMR SOP for Small Molecules & Metabolomics Analysis

Data Collection & Processing using Topspin

Chi-Fon Chang Manager, HFNMRC Senior Research Specialist/Scientist, GRC Academia Sinica 2023.10.24

NMR field	<= 500MHz	>= 600 MHz
chemical shift(ppm)	the	e same
coupling constant(J, Hz)	the	e same
Sensitivity*	lower	higher
Resolution**	lower	better
$\mathbf{H}_{\alpha}^{\dagger} = \exp(-\Delta \mathbf{E}/\mathbf{kT}) = \exp[(\gamma h B_{o})/(2z)]$	1/2 $S/N = signal to f N = number of \gamma_{exc} = gyromaging for a gyroma$	$N = \frac{N\gamma_{exc}T_2(\gamma_{det}B_0)^{3/2}\sqrt{ns}}{T}$ noise ratio of spins in the system (sample concentration netic ratio of the excited nucleus netic ratio of the detected nucleus of scans magnetic field se relaxation time (determines the line width)

- * Higher Sensitivity is needed for low concentration sample
- ** Better resolution is needed for overlap peaks

1D 1H Spectrum in ppm

Higher the field, better the sensitivity and resolution

QA2: Which Probe could provide information I need?

Probe Type	Regular	Cryoprobe
Sensitivity* (organic solvent)	1	~4
(aqueous solution)	1	~2.5
Probe Coil	Observe	Inverse
	(ex:TBO,BBO,Dual)	(ex: TXI, TCI)
	X-nuclei observed Experiment	1H-detected Experiments
	(1D 13C, 1D 31P)	(1D 1H,
		2D COSY/TOCSY
		2D HSQC/HMBC)

NMR & Probes in HFNMRC

NMR & Probe	Topspin	1H (EB)	Others	Regular Probe*	1H (EB)	Others
				500MHz_TXI	450	
NEO500_IBMS	TD4 2	2 000	1,000 (13C)	600MHz_TXI	1,218	
(Cryo QNP)	164.2	2,000	1.000 (19F)	600MHz_BBO	465	465 (13C)
			, ,	600MHz_QXI	1,193	85(31P)
AVIII600_IBMS	TP2.x	5,700	710(13C)	600MHz_TBO		
(Cryo TCI_005)	TP3.x	5,700	110(100)	800MHz_TXI	2,077	
NEO600_IBMS			050(420)			
(Cryo TCI_121)	174.1	0,530	950(13C)	CRYO Probe*	1H (EB)	Others
			377(13C)	500MHz_TXI	4,196	
(regular TBO)	TP2.x	406	241(31P) 342(19F)	500MHz_QNP	2,000	1,000 (13C) 988 (31P)
AV800 IBMS	TDA			600MHz_TCI_005	5,700	710(13C)
(Cryo TXI)	IP2.X	2.X 6,200	N/A	600MHz_TCI_121	6,530	950(13C)
				800MHz_TXI	6,200	
(Cryo TCI)	TP2.X	8,500	1,600(13C)	850MHz_TCI	8,500	1,600(13C)

*Signal to Noise (S/N)value @ installed date

Data Collection using Topspin

Simple Operation Guide for HFNMRC Users

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

Topspin Software

	HFNMRC	Version	Upgrade in 2024
1	NEO500	Topspin4.2	Topspin4.3
2	AVIII600	Topspin2.1 Topspin3.2	
3	AV600_CHEM	Topspin2.1	
4	NEO600	Topspin4.1	Topspin4.3
5	AV800	Topspin2.1	Topspin2.1 Topspin3.2
6	AVIII850	Topspin2.1 Topspin3.2	Topspin4.3

	GRC	Version
1	AV600R	Topspin2.1
2	AV600L	Topspin2.1
		Topspin3.1

What's new for Topspin4.x

NEO must use Topspin4.x or higher version

- Routinely used commends are the same as Topspin2.x or Topspin3.x 指令與Topspin2.x or Topspin3.x 相通
- ◆ Interface is different but not too difficult to follow 介面稍有不同,熟悉即可
- ♦ HFNMRC Standard Experiments and SOP are the same 實驗設定方式與本核心其它NMR相同

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

Lock> The 2H signal is collected by "lock channel" that operates in parallel with the principle channels. "Lock" maintain the center of 2H resonance at a constant frequency.

- Deuterated solvents are used to generate the signal to be detected and monitored by the lock system. The frequency and strength of this signal will depend on the solvent used.
- The lock system uses a receiver to monitor this deuterium frequency and makes adjustments to the magnetic field strength accordingly.
- The deuterium frequency is measured several thousand times per second. Hence, as long as the system is locked, the user can be confident that the field is maintained at a constant strength during acquisition.

*Important: you must lock the correct solvent, otherwise, the spectrum chemical shift might be incorrect.

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

- Wobble> Wobble is to carry out "tuning" and "matching" simultaneously. Type "wobb" for old probe, "atma" or "atmm" for probe with ATM
- **Tuning** involves adjusting the probe circuitry so that the **frequency** at which it is most sensitive is the relevant transmission frequency (SFO1, SFO2 etc.)
- Matching involves ensuring that the maximum amount of the power arriving at the probe base is transmitted up to the coil which lies towards the top of the probe.

*Important: for QNP or BBO probe, you should wobble for the X-nuclei you like to observe

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

- Shimming> Shimming is a process in which minor adjustments are made to the magnetic field until the field homogeneity (uniformity) is optimized. Improving the homogeneity will result in better spectral resolution.
 - Shimming is to adjust the shim coil circuits (ex: Z, Z2, Z3...X,Y....) which are designed to create small magnetic fields that will cancel out inhomogeneity in the Bo magnetic field.

• Type "topshim" for automation, manually shim might be needed

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART II: Experiment Set up & Data Collection

- <getprosol> getprosol is to read in pulse parameters saved in the "prosol"
- prosol is a file (table) containing Probe/Solvent parameters (calibrated using standard sample, ex: Urea/Methanol) for the probehead installed on a specific NMR system.

			edj	prosol			-	
<u>Eile Edit V</u> iew <u>H</u> elp								
		Saved Observe	and Saved Dec	ouple Prosol Param	eter Set for:			
Probe: Z44896_0121 CP TCI 600S3 H-C/N-D-05 Z Select							Solvent: generic	-
		Observe	•	Dec	ouple			
		1H	 Nuc 	leus 1H	-			
		Observe	2	Dec	ouple			
Observe Comment: Default 1H obs 600				Decouple Comme	nt: Default 1H dec	: 600		
90 deg. Pulses HR Square Pulses HR Shape Pulses Others								
		Observe			Decouple			
	Nucleus	Pulse Width[µs] A	tt. Lvi.[dB] Set	Pulse Width[µs]	Att. Lvl.[dB] Set	Nucleus		
	1H	8.00	-7,32 🚫	8.00	-7.32 🕥	1H		
	2H	68.00	-14.81	68.00	-14.81 🚫	2H		
	13C	12.00	-19.55 🕥	12.00	-19.55 🕥	13C		
	15N	35.00	-19.23	35.00	-19.23 🚫	15N		
	Nucleus	Pulse Width[µs] A	tt.Lvi.[dB] Set	Pulse Width[µs]	Att. Lvl.[dB] Set	Nucleus		
*Tunnentent: the nulse			. i. '	LIENI	ADC	مريد ام مرجع	d nonemeter est"	
TWDOLIGIU: THE DUISE	Daran	nerers	s in			siandaro	i darameter set	

*Important: the pulse parameters in "HFNMRC standard parameter set" won't be the same for current probe. Thus, you must "getprosol" to read in the correct parameters for current probe you are using.

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART II: Experiment Set up & Data Collection

- Write down the power level (dB) and corresponding pulse-length(us)
- Instead of "getprosol" only, you should type

"getprosol 1H <90° pulselength> < corresponding power level> "

*With optimized 90 degree pulse, the spectrum quality could be better. Especially for multi-dimensional experiments or experiments with specific pulse angles (ex: dept90, dept135, cosy45)!

Signal Intensity=1/2 But back to Z faster, can collect more scan

Data Processing using Topspin

NOTE: Topspin file structure 檔案編排方式

Data Folder / Experiment Number / Process Number Data 檔名 / 實驗編號 (EXPNO) / 圖譜處理編號 (PROCNO)

Workflow for Data Processing (1)

Workflow for Data Processing (1)

edp	Set up Param SI, SR,	Proc. eter WDW	efp /xfb T	ourier ransfer	.pł	Adju phas	ist se	abs Bas	djust e Line
Bruker TopSpin	3.6.0 on NB-000112	as cfchang							
Start	Process	A <u>n</u> alyse P <u>u</u> blish	<u>V</u> iew <u>M</u> anag	ge 🕜					1
	Γ.	Proc. Spectrum V	♦ Adjust Phase ▼	👌 Calib Axis	🕅 Pick Peaks 🔻		Advanced 🔻		
	*8 *2 🌏 🥞 🕫 /8 /2 🚦 +⁄- 🧃	5			। । । । । । । । । । । । । । । । । । ।]			
Protein Train.2	2019 2 1 G:\data			_ 🗆 ×	4 Protein Train.2	019 11 2 G:\data	3]		
Spectrum ProcP	ars AcquPars Title	PulseProg Peaks Integr	als Sample Structure	Plot Fid	Spectrum ProcP	ars AcquPars Title	PulseProg Peaks II	ntegrals Sample Struc	ture Plot Fid
n S 1,2, M 🛡	· 🔗				m S _{1,2,} M ▼	<i>#</i>	_		
Reference	2	D F2	C F1	Frequency axis	Reference	3D	F3	C ^{F2}	F1
Window Phase	Reference				Window	Reference			
Baseline	SI	2048	256	Size of real spec	Baseline	SI	2048	32	128
Fourier	SF [MHz]	600.1400000	60.8116580	Spectrometer fre	Fourier	SF [MHz]	600.1400000	60.8116580	150.9053230
NUS	OFFSET [ppm]	10.70628	135.00130	Low field limit of	NUS	OFFSET [ppm]	10.70628	135.00130	70.00701
Peak	SR [Hz]	0	0	Spectrum refere	Automation	SR [Hz]	0	0	0
Viscellaneous	HZpPT [Hz]	3.521259	8.314709	Spectral resoluti	Miscellaneous	HZpPT [Hz]	1.595570	66.517670	37.741547
Jser	SPECTYP	HSQC	-	Type of spectrur	User	AQORDER	3-2-1	•	
	Window function	tion				SPECTYP	UNDEFINED		
	WDW			Window function		Window funct	ion		
	LB [Hz]	0.30	0.30	Line broadening		WDW	QSINE		QSINE
	GB	0	0.1	Gaussian max. r		LB [Hz]	1.00	0.30	0
	SSB	2	2	Sine bell shift SS		GB	0.1	0.1	0
	TM1	0	0.1	Left limit for tm 0		SSB	2	2	2
	TM2	0	0.9	Right limit for tm		TM1	0.1	0.1	0.1
	4	,							

Workflow for Data Processing (2)

Workflow for Data Processing (3)

Workflow for Data Processing (3)

Workflow for Data Processing (3)

$2D \rightarrow$ select 2 or more "rows" \rightarrow adjust PHC0 & PHC1 similar to 1D

Workflow for Data Processing (4)

edp Set up Proc. Parameter SI, SR, WDW (xfb) Transfer .ph Adjust phase dbs Base Line										
	1D : abs	2D : abs2 →ab	os1 3D : tabs3 →tal	bs2 → tabs1						
	·	,								
Other useful Tips	■ Bruker TopSpin 3.6.0 on ■ <u>Start</u> Pro <u>A</u> Proc. Spectrum ■ ■ *8 *2	NB-000112 as cfchang cess A <u>n</u> alyse P <u>u</u> blish Adjust Phase Adjust Pha	View Manage D. Axis M Pick Peaks ♥ ∫ Integrate ♥ I← ➡ ↑ ∰ ₩ ↓ 1000 1000 1000 1000 1000 1000 1000	_□× 1 A <u>d</u> vanced マ						
STSR / STSI : adjust window (adjust spectrum window)	Protein Train.2019 2 1 Spectrum ProcPars Acqu S12 M M	Image: Second	←→� ↓ 1. III (& k) © ↓ 1	다						
ME_mod: (ex: LPfr) (Linear prediction) NCOEF: 8*n (ex: 8, 16)	Reference Image: Filler Window TDeff Phase STSR Baseline STSR Fourier STSI NUS ME_mr Peak NCOEr Automation LPBIN	iourier transform 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Number of fid data points used t First output point of strip transfo Total number of output points of Linear prediction for ft, xfb, Number of LP coefficients Number of output points for LP	by ft frm f strip transform						
REVERSE: FALSE / TURE (check from spectrum)	Miscellaneous TDoff User REVER FCOR PKNL FT_mo MC2	0 0 RSE FALSE FALSE 0.5 0.5 TRUE Image: Comparison of the second	Number of back-predicted points ALSE Reverse spectrum during transfor 5 Weighting factor for first fid poin Group delay compensation Fourier transform mode for trf, x tates-TPPI Acquisition mode (FnMODE) for	s orm t trf* 2D, 3D, etc.						

Hands-on Let's try Some Experiments

- 1D 1H one pulse (zg)
- 1D 1H solvent suppression (noesypr1d)
- 1D 13C DEPT (deptq)
- 2D 1H-1H COSY
- 2D 1H-13C HSQC