

Metabolomics NMR using IVDr

NMR Core Facility 核磁共振子核心

藥物合成及分析核心設施 Medicinal Chemistry and Analytical Core Facilities

2023/10/25

TIGP-Course: NMR Spectroscopy-based Metabolomics

Date	Торіс	Lecturer
10/26	Applications of NMR-based metabolomics I - Preface	M-S Hsiao 蕭明熙教授
11/02	Applications of NMR-based metabolomics II - Cancers	M-S Hsiao
11/09	Applications of NMR-based metabolomics III- Diabetes	M-S Hsiao
11/16	Applications of NMR-based metabolomics IV - Cardiovascular and neurodegenerative diseases	M-S Hsiao

Class hours: Thursday, 10:00-12:00

Classroom: A507, Institute of Chemistry, Academia Sinica

NBRP國家生技研究園區-核磁共振核心

核心人員: 羅元超、袁茂嘉、王瓊萩

600A	 NBRP users Reservation < 1hr Acquire ¹H, ¹³C, ¹⁹F, ³¹P signals Auto-sampling for 24 samples Open for self-operation
600B	 NMR collection services by core staff Open for long reservation Acquire ¹H, ¹³C, ¹⁹F, ³¹P signals Cooled auto-sampling for 24 samples Open for self-operation
600C	 Bruker IVDr system Automatic metabolic profiling for human plasma/serum and urine samples High-throughput cooled auto-sampling for 96 x 5 samples

• What is Metabolomics

• NMR Metabolomics

 Bruker IVDr Platform for Automatic Metabolic Profiling

For Beginners!!

D Two Researchers: David Wishart & Jeremy Nicholson

- Websites:
 - https://www.tmicwishartnode.ca/
 - https://hmdb.ca/
 - https://www.metaboanalyst.ca/
- □ References: SO MUCH !!!

What is Metabolomics

Metabolomics is the study of small molecules called metabolites. Metabolomics is an emerging field of "omics" research specializing in the near-global analysis of small-molecule metabolites (1.5 KDa) found in living organisms.

Metabolomics is applicable in many disciplines including disease diagnostics, agriculture, food and safety, and pharmaceutical research and development.

The use of metabolomics allows for the discovery of biomarkers, which in turn leads to the development of improved screening methods.

https://www.tmicwishartnode.ca/metabolomics-services/

Targeted vs Untargeted Metabolomics

Targeted: Metabolites, known a priori, are defined by the biological problem and may represent a class of molecules or a specific pathway.

Untargeted: This type of analysis involves identification and quantification of as many metabolites as possible.

Equipment Used for Metabolomics

NI	MR	LC-	MS	GC-MS		
Pros	Cons	Pros	Cons	Pros	Cons	
 Non-invasive, non-destructive High specificity High resolution Qualitative and quantitative analysis of metabolites 	 Low dynamic range Low sensitivity High capital investment 	 High sensitivity High resolution 	 Unstable Derivatization difficult Sparingly volatile metabolites Databases incomplete Many artifacts 	 Good resolution Good selectivity Comprehensive databases available 	 Complex sample processing Derivatization leads to some analyte loss Derivatization can cause artifacts 	

High stability and reproducibility

Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

Nature. 2011 Apr 7;472(7341):57-63 (5060 Citations)

Metabolite Profiles and the Risk of Developing Diabetes

Chronic exposure to high levels of carbohydrates and/or high levels of essential amino acids (Ile, Leu, Val, Phe, Tyr) eventually overwhelm the insulin-signaling process, leading to insulin resistance, which is a hallmark of type 2 diabetes.

BCAAs can act as biomarkers for type 2 Diabetes.

Nat. Med. 2011 Apr 7; 17(4): 448-453 (3027 Citations)

Cancer Metabolomics

Table 2 | Oncometabolites and their roles in cancer

Oncometabolite*	Mechanism or role		Glucose	 Essential source of carbon to support cancer cell
 2-hydroxyglutarate Inhibits ATP synthase and mTOR signalling Inhibits 2-oxoglutarate-dependent oxygenases, which activate oncogenic hypoxia-induced factor pathways and alter DNA methylation patterns Produced by gain-of-function mutations in the gene encoding isocitrate dehydrogenase Elevated in gliomas and acute myeloid leukemia 			 anabolism, TCA anaplerosis and aerobic glycolysis Activates hexokinase II Activates glucose-regulated proteins that alter signalling, proliferation, invasion and apoptosis Elevated in most cancers 	
	 Elevated in gliomas and acute myeloid leukemia 		Glutamine	• Essential source of nitrogen to support cancer cell
Fumarate Inhibits 2-oxoglutarate-dependent oxygenase which activate oncogenic hypoxia induced factoria pathways and alter DNA methylation patterns 				 e Essential source of carbon for TCA anaplerosis e Elevated in MYC-dependent cancers
	 Leads to protein succination and disrupted metabolism Produced by loss-of-function mutations in the gene encoding fumarate hydratase Elevated in renal carcinoma 		Asparagine	 Essential source of nitrogen to support cancer cell anabolism and aerobic glycolysis Anti-apoptotic agent Elevated in acute lymphoblastic leukemia
Succinate	 Inhibits 2-oxoglutarate-dependent oxygenases which activate oncogenic hypoxia induced factor pathways and alter DNA methylation Produced by loss-of-function mutations in the genes encoding succinate dehydrogenase Elevated in paraganglioma and renal and thyroid tumours 		Choline	 Serves as a methyl donor for DNA methylation which disrupts DNA repair and gene expression Modifies lipid signalling Essential source of carbon and nitrogen to support phospholipid synthesis in rapidly dividing cells Elevated in breast, brain and prostate cancer
Sarcosine	 Activates mTOR signalling pathway Elevated by mutant glycine N-methyl transferase Elevated in metastatic prostate cancer 		Lactate	 Lowers extracellular pH and induces metastasis Induces local immunosuppression Elevated in most cancers

Nat. Rev. Drug Discov. 15, 473–482 (2016).

Why NMR Metabolomics ?

Advantages

- Quantitative
- Non-destructive
- Fast (2–3 min per sample)
- Requires no derivatization
- Requires no separation
- Detects most organic classes
- Allows identification of novel chemicals
- Most spectral features are identifiable
- Robust, mature technology
- Can be used for metabolite imaging (fMRI or MRS)
- Can be fully automated
- Compatible with liquids and solids
- Long instrument lifetime (over 20 years)

Disadvantages

- Not sensitive (LOD = $5 \mu M$)
- High start-up cost (>US\$1 million)
- Large instrument footprint
- Cannot detect or identify salts and inorganic ions
- Cannot detect non-protonated compounds
- Requires larger sample volumes (0.1–0.5 mL)

Nat. Rev. Drug Discov. 15, 473-482 (2016).

The Human Serum Metabolome

Figure 1. Typical 500 MHz ¹**H-NMR spectrum of healthy human serum.** Numbers indicate the following metabolites: 1, imidazole; 2, urea; 3, D-glucose; 4, L-lactic acid; 5, glycerol; 6, L-glutamine; 7, L-alanine; 8, DSS; 9, glycine; 10, L-glutamic acid; 11, L-valine; 12, L-proline; 13, L-lysine; 14, L-histidine; 15, L-threonine; 16, propylene glycol; 17, L-leucine; 18, L-tyrosine; 19, L-phenylalanine; 20, methanol; 21, creatinine; 22, 3-hydroxybutyric acid; 23, ornithine; 24, L-isoleucine; 25, citric acid; 26, acetic acid; 27, carnitine; 28, 2-hydroxybutyric acid; 29, creatine; 30, betaine; 31, formic acid; 32, isopropyl alcohol; 33, pyruvic acid; 34, choline; 35, acetone; 36, glycerol.

PLoS One. 2011; 6(2): e16957. (1317 Citations)

The Human Urine Metabolome

Figure 1. Typical 500 MHz ¹**H-NMR spectra of urine from human urine.** Numbers indicates the following metabolites: 1: creatinine; 2: citric acid; 3: glycine; 4: formic acid; 5: methanol; 6: guanidoacetic acid; 7: acetic acid; 8: L-cysteine; 9: glycolic acid; 10: creatine; 11: isocitric acid; 12: hippuric acid; 13: L-glutamine; 14: L-alanine; 15: L-lysine; 16: gluconic acid; 17:2- hydroxyglutaric acid; 18: D-glucose; 19: indoxyl sulfate; 20: trimethyl-N-oxide; 21: ethanolamine; 22: L-lactic acid; 23: taurine; 24: L-threonine; 25: dimethylamine; 26: pyroglutamic acid; 27: trigonelline; 28: sucrose; 29: trimethylamine; 30: mannitol; 31: L-serine; 32: acetone; 33: L-cystine; 34: adipic acid; 35: L-histidine; 36: L-tyrosine; 37: imidazole; 38: mandelic acid; 39: dimethylglycine; 40: Cis-aconitic acid; 41: urea; 42:3-(3-hydroxyphenyl)-3-hydroxypropanoic acid (HPHPA); 43: phenol; 45: isobutyric acid; 46: methylsuccinic acid; 47:3-aminoisobutyric acid; 48: L-fucose; 49: N-acetylaspartic acid; 50: N-acetylneuraminic acid; 51: acetoacetic acid; 52: Alpha-aminoadipic acid; 53: methylguanidine; 54: phenylacetylglutamine.

PLoS One. 2013; 8(9): e73076. (1064 Citations)

33

4.0

16

NMR Metabolomics Experiment Design

What do you want to see?

https://www.redenedim/h/WebPorh/comments/pw8id/map of the human metabolic pathways 2997x1849/

Sample Preparation:

ACCURATE

- Sample preparation to be simple → save time, less chance of errors, requires less training, less contaminants
 - Fewer steps per sample
 - Automation Push-button operation
- Sample concentration to be high → less NS, higher S/N, more accurate quantification
 - Add less buffer
- Duplicate samples \rightarrow better statistics, error averages out
- Sample viscosity to be low \rightarrow better spectral resolution
 - Optimization of buffer, temperature, etc.

Spectrum type:

NOESY-PRESATuration (noesypr1d)

- Adequate suppression of solvent
- Easy to implement
- Does not require exotic hardware
- Consistency (everybody is using it)
- Disadvantages
 - Not good for very dilute samples
- Improvements
 - Gradients (noesygppr)

CPMG-PRESAturation (cpmgpr1d)

- Carr-Purcell-Meiboom-Gill
- Selects for specific time ranges of motion → molecular weight filter
- Allows detection of small molecules in a mixture of large and small molecules.
- Lower signal intensity
- Tricky quantitation

Example: Serum

Targeted & Untargeted NMR Metabolomics

• M_FS • M_NN

PLSDA

T score [1] (1.8 %)

Tips for Metabolites Identification

- Is the metabolite known to exist in the biospecimen (or the species)?
- What is the typical concentration range of the metabolite?
- What are the (other) typical metabolite signals in your observation window?
- What other experiments or techniques could you perform or use to obtain more information?
- If in doubt, leave the signals alone!

NMR Databases

- Chemical shift position of each nucleus
- Splitting patterns
- Sample type and origin
- Extras
 - 2D spectra
 - Other spectroscopy data
 - Metabolite information
 - Etc...

HMDB

D-Glucose (HMDB0000122)

					\sim				
-Experimental ⊠ Simulated □									
5	5.5		5	4.5	4 ppm		3.5	3	2.5
Hide H Hide # D-Glu	ICOSE	Multiplets	< ≥ 4.63 3.89 3.73 3.47	3.46 3.40 3.23					
H24		Assignment Table							
🖣 H23	н. Э	Row No.	Cluster Midpoint	No. Peaks	Coupling Type	No. H's	Atom No.	Peak Centers (ppm))
	21	1	4.63	2	d	1	17	4.63 4.64	
H16		2	3.89	4	dd	1	15	3.87 3.88 3.90	3.90
A11	7	3	3.73	4	dd	1	14	3.71 3.72 3.73	3.74
	10	4	3.47	4	dd	1	21	3.45 3.47 3.47	3.49
	10	5	3.46	6	dt	1	16	3.43 3.45 3.45	3.46 3.47 3.48
		6	3.40	4	dd	1	23	3.38 3.39 3.40	3.42
JS	mol	7	3.23	4	dd	1	(19)	3.22 3.23 3.23	3.25

Isoleucine

0.0335

0.0577

Metabolites Identification using Chenomx

Chenomy Inc

0.0867

96.49

Easy Metabolites First

Untargeted NMR Metabolomics using Mnova

What IVDr can Help?

國家主技研究園區

https://www.redefie.ebine/https://ww

Component 1 (28%)

T score [1] (1.8 %)

IVDr Platform: Fully Automated NMR Metabolic Profiling for Human Bodyfluids Samples

National Biotechnology Research Park

Steps in Bruker IVDr Platform

~20 mins for 1 sample

IVDr Sample Preparation:

- Lock solvent needed (e.g. 10% of D₂O)
- Stabilizing line positions of pH-dependent signals

- buffer addition

- pH adjustment
- Biological stabilization (e.g. addtion of NaN₃)
- Dilution
 - lower initial concentration (e.g. juice concentrate)
 - lower the viscosity
 - decrease risk of foam and bubbles in flow
 - lower the salt concentration
 - adjust sample to target volume (e.g. 200µL to 600µL final volume)
- Concentrating up and / or change solvent to NMR "friendly" solvent
 - lyophilization and redilution in D_2O
 - partial evaporation of solvent

pH -Effect on urinary NMR signal positions

Preparation Procedure - Urine

- Carefully thaw the samples at room temperature for ca.30 min.
- (Centrifuge the samples for 5 to 10min at ~2000 RCF).
- Add 100µL of Bruker urine buffer.
- Add 900µL of urine into a Cryovial / Eppendorf
- Mix the buffered urine for 30 seconds on the Vortex mixer.
- Transfer 600uL of well mixed sample into a 5mm 7" NMR tube or a 5mm SampleJet rack tube.

In urine, pH -adjustment does not reduce positional variability.

pH Estimation for Urine

Correlation = 0.00

Data from > 1000 urine samples (20 – 80 years)

In urine, NMR signal positions are affected by pH, ion composition and concentration. pH -adjustment does not reduce positional variability.

Plasma with Sodium Citrate (OK)

SOP for Blood Collection

- Blood collection in fasted state (e.g in the morning, 12 h fasted).
- Fresh EDTA-plasma into 6ml-tubes EDTA (BD Ref. 367864, Vacutainer K2E 10.8 mg),
- Needle diameter 0.8mm.
- Gentle blood withdrawal, avoiding manipulation of the vein or a long time of tourniquet, which might result in hemolysis.
- Centrifugation at (6° C, 13 min at 1700 G).
- 1mL plasma per aliquot into Biozym-containers (Biozyme Ref. tube: 710020, cap: 710030).
- Immediate deep freezing of plasma at -80 $^{\circ}$ C.

Preparation Procedure – Plasma/Serum

Bionice 生醫轉譯研究中/ Biomedical Translation Research Cen

- Carefully thaw the samples at room temperature for ca.30min.
- Add 400µL of Bruker plasma buffer.
- Add 400µL of plasma/serum into a Cryovial / Eppendorf.
- Shake the mixture gently for 1min (do NOT use the Vortex mixer).
- Transfer 600µL of well mixed sample into a 5 mm 7" NMR tube or a 5 mm SampleJet rack tube.

SOPs in Calibration and Measurement

Software

- Automation software scripts
- Experimental parametersets
- ICON NMR configuration
- SampleTrack configuration

Reference Samples and Buffers

- Calibration samples for daily Quality Control and Optimization
- Pseudo Bodyfluid test samples
- Buffer solutions (starter kit)

• Sample preparation SOPs / Sample NMR Measurements SOPs

• Quality Control SOPs

FILCOR_NOESY	PROF_PLASMA_CPMG	QUANTREF600C_CS	
FILCOR_ZGPR_01	PROF_PLASMA_CPMG_3mm	QUANTREF600C_CS_3mm	
IVDr_CPMG	PROF_PLASMA_DAS_A	QUANTREF600C_CS_01	
IVDr_DAS	PROF_PLASMA_DAS_L	QUANTREF600C_CS_01_3mm	nation ester Switches
IVDr_DIFF	PROF_PLASMA_DIFF	QUANTREF600C_PS	tomation Window
IVDr_GRADPROF	PROF_PLASMA_DIFF_3mm	QUANTREF600C_PS_3mm	tual Parameter Set ning/Matching
IVDr_JRES	PROF_PLASMA_JRES	QUANTREF600C_PS_01	ck/Shim Options Solvent/Probe
IVDr_NOESY	PROF_PLASMA_JRES_3mm	QUANTREF600C_PS_01_3mm	Dependencies toCalibrate
IVDr_ZG30	PROF_PLASMA_NOESY	QUANTREF600C_UR	ority
IVDr_ZGPR	PROF_PLASMA_NOESY_3mm	QUANTREF600C_UR_3mm	-NIMR Options
IVDr_ZGPR_01	PROF_PLASMA_ZGPR	QUANTREF600C_UR_01	mpleTrack Option
IVDr_ZGPR2D	PROF_PLASMA_ZGPR_3mm	QUANTREF600C_UR_01_3mm	eb Interface
MEOD_TEMPCAL_300K	PROF_PLASMA_ZGPR_01	SUC_GRADPROF	IS NMR
MEOD_TEMPCAL_300K_3mm	PROF_PLASMA_ZGPR_01_3mm	SUC_GRADPROF_3mm	SST is/Ouantification
MEOD_TEMPCAL_310K	PROF_URINE_DAS_A	SUC_NOESY	ox Setup
MEOD_TEMPCAL_310K_3mm	PROF_URINE_DAS_N	SUC_NOESY_3mm	nting
PROF_CSF_JRES	PROF_URINE_JRES	SUC_NOESY_310K	
PROF_CSF_JRES_3mm	PROF_URINE_JRES_3mm	SUC_NOESY_310K_3mm	
PROF_CSF_NOESY	PROF_URINE_NOESY	SUC_ZGPR	
PROF_CSF_NOESY_3mm	PROF_URINE_NOESY_3mm	SUC_ZGPR_3mm	
PROF_CSF_ZGPR	PROF_URINE_ZGPR	SUC_ZGPR_310K	
PROF_CSF_ZGPR_3mm	PROF_URINE_ZGPR_3mm	SUC_ZGPR_310K_3mm	
PROF_CSF_ZGPR_01	PROF_URINE_ZGPR_01	SUC_ZGPR_01	
PROF_CSF_ZGPR_01_3mm	PROF_URINE_ZGPR_01_3mm	SUC_ZGPR_01_3mm	
PROF_MEOH_JRES	QUANTREF600C_BA	SUC_ZGPR_01_310K	
PROF_MEOH_JRES_3mm	QUANTREF600C_BA_3mm	SUC_ZGPR_01_310K_3mm	
PROF_MEOH_NOESY	QUANTREF600C_BA_310K	SUC_ZGPR2D	
PROF_MEOH_NOESY_3mm	QUANTREF600C_BA_310K_3mm	SUC_ZGPR2D_3mm	
PROF_MEOH_ZG30	QUANTREF600C_BA_01	SUC_ZGPR2D_310K	L
PROF_MEOH_ZG30_3mm	QUANTREF600C_BA_01_3mm	SUC_ZGPR2D_310K_3mm	
PROF_MEOH_ZGPS	QUANTREF600C_BA_01_310K		
PROF MEOH ZGPS 3mm	OUANTREE600C BA O1 310K 3mm		1

۲	Experiment Name	¹ H Channel Tuning/Matching	X Channel Tuning/Matching	With option
	PROF_CSF_IRES_3mm	Never	Never	
	PROF_CSF_NOESY	🖉 Never	🖉 Never	
	PROF_CSF_NOESY_3mm			
	PROF_CSF_ZGPR	Never	Never	
	PROF_CSF_ZGPR_3mm	Never	Never	
	PROF_CSF_ZGPR_01	Never	Never	
	PROF_CSF_ZGPR_01_3mm	Never	Never	
	PROF_DIFF	Always A	Ahrays	
	PROF_JRES	P Always	P Ahrays	
	PROF_MEOH_JRES	Never	Never	
	PROF_MEOH_JRES_3mm	Never	Never	
	PROF_MEOH_NOESY	Never	Never	
	PROF_MEOH_NOESY_3mm	Never	Never	
	PROF_MEOH_ZG30	Never	🕗 Never	
	PROF_MEOH_ZG30_3mm			
	PROF_MEOH_ZGPS	Ø Never	Never	
	PROF_MEOH_ZGPS_3mm	Never	Never	
	PROF_PLASMA_CPMG	Never	Never	
	PROF_PLASMA_CPMG_3mm	Never	Never	
	PROF_PLASMA_DAS_A	Never	Never	
	PROF_PLASMA_DAS_L	Never	Never	
	PROF_PLASMA_DIFF	Never	Never	
	PROF_PLASMA_DIFF_3mm	Never	Never	
	PROF PLASMA JRES	Never	Never	
	PROF PLASMA JRES 3mm	Never	Never	
	PROF_PLASMA_NOESY	Never	Never	
	PROF_PLASMA_NOESY_3mm	🖉 Never	🖉 Never	
	PROF_PLASMA_ZGPR	Never	Never	
	PROF_PLASMA_ZGPR_3mm	Ø Never	Never	
	PROF_PLASMA_ZGPR_01	Never	Never	
	PROF_PLASMA_ZGPR_01_3mm	Never	Never	
	PROF URINE DAS A	Never	Ø Never	
	PROF_URINE_DAS_N	Never	Never	
	PROF_URINE_IRES	Never	Never	
	PROF_URINE_JRES_3mm	Never	Ø Never	
	PROF_URINE_NOESY	Never	Never	
	PROF_URINE_NOESY_3mm	Never	Never	
	PROF URINE ZGPR	(2) Never	Ø Never	

IVDr Sample Kit

IVDr Buffers

Quality Control in NMR

- Advanced DAILY quality control of the system by calibration, validation and reporting methods: temperature <0.09 °C, shim (TSP < 0.8 Hz), water suppression (water hump -50% < 30Hz), quantification (98-102%)
- **system suitability functionality** i.e. temperature management and operation mode (5mm/3mm) push buttom
- Advanced monitoring of NMR parameters (p1, residual water, shim)
- Supports reporting needs for laboratory accreditation.

Quality Control	QC Report	Control Charts
(Filcor Calibration)	\checkmark	\checkmark
Temperature Calibration	\checkmark	\checkmark
Shim & Watersuppression	./	2/
Optimization	V	V
QuantRef Calibration &	./	./
Validation	V	V
Bodyfluid screening	-/	-/
NMR quality validation	V	v

QC Report:

- spectrum title
 - XML
 - PDF
- Control Chart:
 - CSV table
 - PDF

Acquire Process Analyse Publish View Manage	IVDr Menu 🕜		1 2 B T
QuantNMR - Reporting - Temperatur	re settings 🛩		
•8 •2 ♀ <td< th=""><th></th><th></th><th></th></td<>			
2 QTR1_2020_PS132_PSS2020A054_RUN1_5941809_3_10_1_CONVD-Data Generate a Bodyfluid NM	R SOP validation report		0.0
Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure P	est and sector		
NOESYGPPR1D Bodyfluid NMR SOP validation			166]
C/VDrDala/data/CL-PS-LSP-200109:200109hmi/QTR1_2020_PS152_PS5202 Acquisition at: 2020-01-09-15-57-57 Probe head: 2814601_0108 (PA BBI 6005314-BB-D-05-2) Sample info: 5mm Plasma sample Parametar sat: PROF_PLASMA_NOESY. Solvent: Plasma	0A054_RUN1_5941809_1/10pdata/1/1r		
Pulse P1 943us Dance Di dB1 11654B			
Own PLBD: 17 0000 Power PLBD: 48 86d8 RF Presut: 25 00Hz Requency Offset 01: 2821 98Hz Hallweht of Usinga (cf. 50kh): 1:22kb			- 64
Residual Solvent Signal (<30.0mmol/L). 18.3mmol/L			
Bodyfluid MMR parameters within acceptance range	d Juli h	white	-
	1 hours		M
8 6	4	2	0 (ppm)

Temperature Calibration <0.09 °C

Shim and Water Suppression (zgpr)

Shim and Water Suppression (noesygppr1d)

2

0

[ppm]

6

Quantification Validation (98-102%)

Validation for Plasma

Validation for Urine

[*1 e6] NOESYGPPR1D Bodyfluid NMR SOP validation Acquisition at: 2021-02-25-12-24-42 Probe head: Z814601_0144 (PA BBI 600S3 H-BB-D-05 Z) 8-Sample info: 5mm Urine sample Parameter set: PROF_URINE_NOESY Solvent: Urine Pulse P1: 10.83us Power PLdB1: -12.46dB Power PLdB9: 46.84dB 9 RF Presat: 25.00Hz Frequency Offset O1: 2821.32Hz Halfwidth of RefSig at Oppm (<1.30Hz): 0.78Hz Residual Solvent Signal (<30.0mmol/L): 14.2mmol/L Bodyfluid NMR parameters within acceptance range TSP < 1.3 Hz 6 **Quantification Reference:** 10 mM protons - 40 Water < 30 mM 0 10 [ppm] 14 12 2 0 8 6

Automatic Matabolite Identification & Quantification

Bruker IVDr provides automatic identification on:

- 41 metabolites in Plasma/Serum
- 150 metabolites in Urine
- 115 Lipoprotein parameters in Plasma/Serum

3 Amino acids and derivatives

Compound	Conc.	LOD	r	ρ	Δ	95% Range	Graphics ^(*)
	mmol/L	mmol/L	mmol/L	%	mmol/L	mmol/L	
2-Aminobutyric acid	< 0.05	0.05	0.000	0 ()	0.827	≤ 0.10	
Alanine	0.42	0.02	0.423	100 🔵	0.011	0.29 - 0.64	
Asparagine	< 0.05	0.05	0.000	0 ()	4.734	≤ 0.08	
Creatine	0.02	0.01	0.024	100 🔵	0.002	≤ 0.07	
Creatinine	0.06	0.01	0.059	100 🔵	0.002	0.06 - 0.14	
Glutamic acid	0.11	0.05	0.106	25 🔿	0.083	≤ 0.24	
Glutamine	0.69	0.02	0.687	99 🔴	0.018	0.30 - 0.83	
Glycine	0.30	0.01	0.298	100 🔵	0.007	0.17 - 0.44	

Lipoprotein Analysis

National Biotechnology Research Park

115 Parameters: CH, FC, TG, PL, ApoA1,A2,B100

Main and subfractions VLDL, LDL, HDL

Lipoprotein Report

Particle numbers

Total Concentration of ApoB carrying Particles

Key	Parameter	Value	Unit	95% Range of Model	Graphics (*)
TBPN	Total Particle Number	1777	nmol/L	876 - 2908	

(*) Gray horizontal boxes represent 95% range of model, black vertical lines represent sample value.

Lipoprotein Main Fractions

Key	Parameter	Value	Unit	95% Range of Model	Graphics (*)
VLPN	VLDL Particle Number	138	nmol/L	50 - 473	
IDPN	IDL Particle Number	98	nmol/L	36 - 316	
LDPN	LDL Particle Number	1452	nmol/L	760 - 2560	

(*) Gray horizontal boxes represent 95% range of model, black vertical lines represent sample value.

LDL Subfractions

Key	Parameter	Value	Unit	95% Range of Model	Graphics (*)
L1PN	LDL-1 Particle Number	232	nmol/L	98 - 567	
L2PN	LDL-2 Particle Number	268	nmol/L	47 - 427	
L3PN	LDL-3 Particle Number	282	nmol/L	51 - 499	
L4PN	LDL-4 Particle Number	300	nmol/L	77 - 577	
L5PN	LDL-5 Particle Number	248	nmol/L	86 - 615	
L6PN	LDL-6 Particle Number	182	nmol/L	91 - 815	

(*) Gray horizontal boxes represent 95% range of model, black vertical lines represent sample value.

Main class

Key	Parameter	Value	Unit	95% Range of Model	Graphics ^(*)
TPTG	TG	115	mg/dL	53 - 490	
TPCH	Chol	204	mg/dL	140 - 341	
LDCH	LDL-Chol	134	mg/dL	55 - 227	
HDCH	HDL-Chol	50	mg/dL	35 - 96	
TPA1	Apo-A1	146	mg/dL	112 - 217	
TPA2	Apo-A2	32	mg/dL	24 - 48	
TPAB	Apo-B100	98	mg/dL	48 - 160	

Subclass

GOOD Correlation between NMR and Biochemical Values

Provided by Taiwan BioBank

The super BAD LDL: sLDL

Atherosclerosis & Lipoproteins

Low-Density Lipoprotein Subfractions and the Long-Term Risk of Ischemic Heart Disease in Men 13-Year Follow-Up Data From the Québec Cardiovascular Study

Annie C. St-Pierre, Bernard Cantin, Gilles R. Dagenais, Pascale Mauriège, Paul-Marie Bernard, Jean-Pierre Després, Benoît Lamarche

Objective—The objective of the present study was to investigate the association between large and small low-density lipoprotein (LDL) and long-term ischemic heart disease (IHD) risk in men of the Québec Cardiovascular Study. *Methods and Results*—Cholesterol levels in the large and small LDL subfractions (termed LDL-C_{≈260Å} and LDL-C_{<255Å}, respectively) were estimated from polyacrylamide gradient gel electrophoresis of whole plasma in the cohort of 2072 men of the population-based Québec Cardiovascular Study. All men were free of IHD at the baseline examination and followed-up for a period of 13 years, during which 262 first IHD events (coronary death, nonfatal myocardial infarction, and unstable angina pectoris) were recorded. Our study confirmed the strong and independent association between LDL-C_{<255Å} levels as a proxy of the small dense LDL phenotype and the risk of IHD in men, particularly over the first 7 years of follow-up. However, elevated LDL-C_{≈260Å} levels (third versus first tertile) were not associated with an increased risk of IHD over the 13-year follow-up (RR=0.76; *P*=0.07).

Conclusions—These results indicated that estimated cholesterol levels in the large LDL subfraction were not associated with an increased risk of IHD in men and that the cardiovascular risk attributable to variations in the LDL size phenotype was largely related to markers of a preferential accumulation of small dense LDL particles. (*Arterioscler Thromb Vasc Biol.* 2005;25:553-559.)

The classical lipid risk factors (Total Chol./HDL) CANNOT perfectly predict cardiovascular disease in patients, sLDL subfraction has the potential to improve risk prediction.

小顆低密度脂蛋白(sLDL)容易黏附至血管,且容易被氧化,導致心血管的疾病。因此,sLDL的顆粒數可做為預測心血管疾病的重要風險因子

41 Plasma Metabolites:

by positing the mouse cursor on a metabolite name, the corresponding graphical fit display pops up in PDF report

4 Amino acids and derivatives

Compound	Conc.	LOD	r	ho	Δ	95% Range	Graphics ^(*)
	mmol/L	mmol/L	mmol/L	%	mmol/L	mmol/L	
Alanine	0.43	0.02	0.433	100 🔵	0.016	0.29 - 0.63	
Creatine	0.02	0.01	0.024	99 🔵	0.004	≤ 0.07	
Glutamic acid	0.07	0.05	0.075	38 🔾	0.106	≤ 0.25	
Glutamine	0.58	0.02	0.579	99 🔵	0.023	0.29 - 0.82	
Glycine	0.22	0.10	0.224	99 🔵	0.013	0.15 - 0.42	
Histidine	0.10	0.02	0.100	99 🔵	0.002	0.07 - 0.17	
Isoleucine	0.05	0.03	0.054	95 🔵	0.006	0.03 - 0.11	
Leucine	0.07	0.01	0.072	96 🔵	0.010	0.06 - 0.20	
Phenylalanine	< 0.05	0.05	0.028	95 🔵	0.004	≤ 0.06	
Tyrosine	0.05	0.03	0.052	97 🔵	0.005	≤ 0.08	
Valine	0.22	0.03	0.216	100 🔵	0.007	0.15 - 0.36	

(*) Gray horizontal boxes represent 95% concentration range, black vertical lines represent sample value.

150 Urine Metabolites:

4 Amino acids and derivatives

Bruker BioSpin GmbH	Compound	Conc.	Conc.	LOD	r	ρ	Δ	95% Range ^(*)
		mmol/L	mmol mol Crea	mmol mol Crea	mmol/L	%	mmol/L	mmol Crea
	1-Methylhistidine	< 0.12	< 15	15	0.000	00	0.085	≤ 15
	2-Furoylglycine	< 0.30	< 39	39	0.000	00	0.038	≤ 40
	3-Aminoisobutyric acid	< 0.66	< 85	85	0.000	00	0.489	≤ 85
Analysis Report	3-Methylcrotonylglycine	< 0.06	< 8	8	0.000	00	0.007	≤ 8
Analysis Report	4-Aminobutyric acid	< 0.15	< 20	20	0.000	00	0.306	≤ 20
B ruker IVDr Quant ification in UR ine B.I.Quant-UR e^{TM}	5-Aminopentanoic acid	< 0.73	< 94	94	0.000	00	0.972	≤ 94
	Alanine	0.18	23	10	0.180	100	0.012	11 - 72
1 Creatining	Arginine	< 5.8	< 750	750	0.433	00	1.526	≤ 750
1 Creatinine	Argininosuccinic acid	< 0.22	< 29	29	0.000	00	0.387	≤ 29
	Betaine	0.10	13	7	0.097	100	0.031	9 - 78
2 Alcohols and derivatives	Citrulline	< 5.3	< 690	690	0.299	10	2.260	≤ 690
	Creatine	< 0.39	< 50	50	0.032	100	0.250	≤ 280
	Cystine	< 3.8	< 490	490	0.000	00	2.862	≤ 490
3 Amines and derivatives	DL-Alloisoleucine	< 0.37	< 48	48	0.000	00	0.184	≤ 48
	DL-Tyrosine	< 0.34	< 44	44	0.000	00	0.295	≤ 44
4 Amino acids and derivatives	Glutamic acid	< 3.5	< 460	460	0.000	00	1.590	≤ 4 60
	Glutamine	< 3.4	< 440	440	0.000	00	9.383	≤ 440
	Glycine	0.66	85	34	0.658	100	0.036	38 - 440
5 Benzene and substituted derivatives	Guanidinoacetic acid	< 0.80	< 100	100	0.277	350	0.264	≤ 140
	Isobutyrylglycine	< 0.05	< 7	7	0.000	00	0.071	≤ 7
	L-Carnosine	< 0.99	< 130	130	0.000	00	0.157	≤ 130
6 Carboxylic acids	L-Homocystine	< 7.1	< 910	910	0.000	00	0.343	\leq 910
	L-Isoleucine	< 0.12	< 16	16	0.010	670	0.007	≤ 16
7 Cosmetics vitamines drugs and drug metabolites	L-Pyroglutamic acid	< 0.25	< 32	32	0.000	00	1.457	≤ 67
· Cosnelles, trainies, angs and ang metabolies	L-Tryptophan	< 0.75	< 97	97	0.079	730	0.121	≤ 97
	Leucine	< 0.17	< 22	22	0.029	740	0.011	≤ 22
8 Fatty acids and derivatives	Methionine	< 0.14	< 18	18	0.010	95	0.032	≤ 18
	N,N-Dimethylglycine	< 0.04	< 5	5	0.029	910	0.015	
0 Hudrowy saids and derivatives	N-Acetylaspartic acid	< 0.77	< 99	99	0.083	160	0.269	≤ 99
9 Hydroxy actus and derivatives	N-Acetylglutamate	< 0.33	< 42	42	0.000	00	0.209	≤ 42
	N Acetylphenylalanine	< 1.00	< 130	130	0.000	00	0.559	
10 Keto acids and derivatives	N-Acetyltyrosine	< 2.9	< 380	380	0.000	00	1.382	≤ 380
	N-Isovaleroylglycine	< 0.01	< 2	2	0.012	640	0.010	
	Phenylalanine	< 1.5	< 200	200	0.125		0.001	≤ 200
11 Purine, Pyridine and Pyrimidine derivatives	Proline betaine	< 0.19	< 25	25	0.100	90	0.033	≤ 280 <u> </u>
	Fropionyigiycine Souccesing	< 0.10	< 12	12	0.000		0.100	
12 Sugars and derivatives	Jarcosine	< 0.01	< 2	140	0.005	46	0.009	
The outputs and derivatives	Taurine	< 1.1	< 140	140	0.202	400	0.191	
	i igiyigiycine	< 0.15	< 19	19	0.000		0.009	
13 Explanations	valine	0.03	4	2	0.034	800	0.014	

(*) Gray horizontal boxes represent 95% concentration range, black vertical lines represent sample value.

Conclusions for IVDr

- NMR is a robust and highly reproducible spectroscopic method, allowing to integrate spectral data from all over the globe into post processing like statistical analysis and quantification for urine, plasma, CSF and Methanol extract of Bodyfluids, cell cultures or tissues.
- On Avance IVDr platform there are efficient enabling tools to generate large number of parameters out of 1 measurement, including targeted and non-targeted results
- Urine quantification is a tool generating up to 150 metabolites and the results can be linked to associated external knowledgebases (Metagene) to maximize information content
- Lipoprotein subclass analysis is a tool generating 115 lipoprotein related parameters in 1 measurement under full automation, clinical relevance in cardiovascular risks. With the same measurement quantification of 41 small molecules can be done allowing to have 2 different angles on a disease
- NMR can support biobanks offering input QC of samples and at the same time creating spectra that offer a substantial value add for the biobank

