2016 HFNMRC Workshop on NMR Screening Approaches

Hands-On : NMR Experiments

- (1) Ligands Screening
- (2) Metabolites Screening

Chi-Fon Chang

Senior Research Specialist, Genomics Research Center Manager, High Field NMR Center Academia Sinica

2016.06.24

(1) Ligands screening

Which Library/compounds to start with?

-Fragment library -Spectrum library

Which NMR Experiments ?

-Ligand observation -Protein observation

How to set up screening condition?

-Experimental conditions

After screening.....

-Hits identifying & validating -Follow up "chem-is-try" -Structure.....

of cLogP in

<u>"Rule of three (Ro3)</u> or "Rule of V"

(Method in Enzymology, 493,219, 2011)

Table 9.1 Criteria used to define fragment libraries

Property	Rule of three	Rule of V	Vertex avg ^a
MW (Da)	≤300	150-300	249.7 ± 49.4
clogP	≤ 3	≤ 3	1.5 ± 1.1 1.0 ± 0.8
H-bond acceptors	≤ 3	≤ 6	3.1 ± 1.3
Rotatable bonds	≤ 3	≤ 6	3.1 ± 1.8
$PSA(A^2)$	≤ 60	≤ 80	60.2 ± 21.5

^d Average values ± standard deviation for 1100 compounds in the Vertex diverse fragment libraries.

NMR Experiments to Observe Changes of NMR single

NMR methods for compound screening and hit validation

(Nat.Rev Drug Discov, 7,738,2008)

Approach	Observation	Use	Description and references to recent applications
Chemical-shift perturbation ¹	Target (protein or nucleic acid) resonances	Primary screening Hit validation Site of binding	Identifies compounds that bind by means of chemical-shift perturbation of resonances of the target 11,77,83-86
STD NMR ²	Ligand	Primary screening Hit validation	Identifies compounds that bind weakly; build-up curve identifies interacting functional groups ^{3,13,30,86–89}
WaterLOGSY ⁹⁰	Ligand	Primary screening	Identifies compounds that bind by using water-mediated NOEs ^{10,91}
SLAPSTIC (Using spin- labelled protein) ⁹²	Ligand	Primary screening	Highly sensitive detection of fragments that bind ^{5,92}
TINS ⁹³	Ligand	Primary screening Hit validation	Identifies compounds that bind by screening libraries against immobilized protein targets ⁹³
$T_{1\rho}$ and T_2 relaxation; line broadening 4	Ligand	Primary screening Hit validation	Binding enhances relaxation; enables affinity estimates; build-up curve identifies interacting functional groups ⁹⁴
Transferred NOEs ⁹⁵	Ligand	Hit validation Conformation of flexible ligands	Gives information about the interaction of binders with the target ^{96,97} ; determines bioactive conformation of flexible ligands such as peptides ¹⁴
FABS ^{16,17}	Substrate or cofactor	Primary screening Hit validation	Uses reference substrates or cofactors to monitor enzymatic reactions ^{12,98–104}
FAXS105,106	Reference ligand	Primary screening Hit validation	Measures the displacement of a fluorinated 'spy' molecule104,107
Diffusion measurements108,109	Ligand	Primary screening Hit validation	Measures the difference in diffusion rates for ligands in the bound versus free state ¹¹⁰

* Design and Characterization of a Functional Library for NMR screening Against Novel Protein Targets, Robert Powers et al>< Combinatorial Chemistry & High Throughput Screening, 2006,9,515-534

HFNMRC: Observe changes of ligands spectrum

- less protein
- no 15N needed

Example : 0.2mM compounds + ~0.005mM Protein , i.e. ~40:1 Total protein needed: 0.005mM*500ul*200 groups

<Example of 1D 1H Line Broadening simple 1D experiments with solvent suppression >

<Example of 1D Relaxation Effect T1 ρ experiments >

Data for NDM1

1D 1H Line Broadening / Chemical Shift perturbation

Data for PDK

HFNMRC: Observe changes of Protein spectrum

- 15N protein
- routine protein NMR experiments (ex: HSQC)

Questions to answer

How the protein interact with ligand?

NMR approaches

Step1: "Backbone assignment" for the protein

Step2: Follow "chemical shift" perturbation upon titration

Step3: Map the chemical shift perturbation result into protein structure (if available)

In HFNMRC (Compounds Screening)

Parameter Sets for compound-protein screening experiments :

Standard Parameter Set	Pulse Program	Observed signals	Note
htnmr_ZGW5	zggpw5	Lignads	01 @H2O
htnmr_STD	stddiffesgp3.cf	Lignads	fq2list
htnmr_T1roh	t1roh2des_2013.cf	Lignads	vdlist
htnmr_wLOGSY	epnogsygpno.cf	Lignads	

Parameter Sets for Protein NMR experiments :

Standard Parameter Set	Pulse Program	Observed signals	Note
std1_2D_15N-HSQC	fhsqcf3gpph	Protein	15N-labelled
std1_2D_15N-HSQC	hsqcetf3gpsi		
std1_2D_15N-HSQC	hsqcetfpf3gpsi		
std1_2D_15N-HSQC	hsqcfpf3gpphwg		

(2) Metabolites screening

Approaches for Metabonomics Research

Quantitative (Targeted)

From David Wishart

From Spectra to Lists

From Lists to Pathways

From Pathways & Lists to Models & Biomarkers

From David Wishart

Analytical challenges for metabonomics

Identification

Assignment of the unknown compounds

• Higher Resolution

Sample contains mixtures of compounds

• Higher Sensitivity

Low concentration sample

Reproducibility

Reliable data for interpretation

•High throughput

Large sample amount

Using NMR in Metabonomics Research

Technical support from High Field NMR Center

NMR measurement Tell you whatever it can see

In HFNMRC (Metabonomics Profiling)

Parameter Sets for Metabonomics related experiments :

(with DIGMOD BASEOPT)

Standard Parameter Set	Pulse Program	Sample Type	Note
std3_Meta_URINE_01	zgpr	URINE	URINE_5mm
std3_Meta_PROF_URINE_1H	noesygppr1d		
std3_Meta_PROF_URINE_JRES	jresgpprqf		

Standard Parameter Set	Pulse Program	Sample Type	Note
std3_Meta_PLASMA_01	zgpr	PLASMA	PLASMA_5mm
std3_Meta_PROF_PLASMA_1H	noesygppr1d		
std3_Meta_PROF_PLASMA_CPMG	cpmgpr1d		
std3_Meta_PROF_PLASMA_DIFF	ledbpgppr2s1d		
std3_Meta_PROF_PLASMA_JRES	jresgpprqf		

(earlier set up std3_NTU_* based on Nature Protocals 2007, V2, No. 11, 2692)

In HFNMRC (Compounds /Metabolites identification)

2D 1H-1H Experiments

GRC Parameter Set	Experiment Details
std0_2D_COSY_cosygpppqf	1H-1H COSY
std0_2D_COSY-sol_cosygpprqf	1H-1H COSY with solvent supression
std0_2D_COSY-sol_cosyprqf	1H-1H COSY with solvent supression
std0_2D_COSY45_cosyqf45	1H-1H COSY
std0_2D_COSY-dec13C_cosydcgpqf	1H-1H COSY with 13C decoupled
std0_2D_COSY-DQF- sol_cosydfgpph19	1H-1H COSY with solvent supression
std0_2D_COSY-DQF_cosygpmfph	1H-1H COSY
std0_2D_TOCSY_dipsi2etgpsi	1H-1H TOCSY
std0_2D_TOCSY-sol_dipsi2etgpsi19	1H-1H TOCSY with solvent supression
std0_2D_TOCSY-sol_dipsi2phpr	1H-1H TOCSY with solvent supression

2D 1H-13C Experiments

GRC Parameter Set	Experiment Details
std0_2D_HSQC_hsqcetgpsisp2.2	1H-13C HSQC
std0_2D_HSQC-editing_hsqcedetgpsisp2.2	1H-13C edited HSQC
std0_2D_HSQC-nodec_hsqcetgpsisp.cf	Determine XH coupling
std0_2D_HSQC-sol-hsqcetgpprsisp2.2	1H-13C HSQC with solvent suppression
std0_2D_HMQC-hmqcetgpsi.2	1H-13C HMQC
std0_2D_HMQC-hmqcgpqf	1H-13C HMQC
std0_2D_HMBC_hmbcgplpndqf	1H-13C HMBC
std0_2D_HMBC_hmbcetgpl3nd	1H-13C HMBC J-filter to suppressed one-bond
std0_2D_HMBC-CIGAR_hmbcacgplpndqf.2	1H-13C HMBC optimized for long range signals

Research article

Received: 27 February 2015

Revised: 28 March 2015

Accepted: 8 April 2015

Published online in Wiley Online Library

(wileyonlinelibrary.com) DOI 10.1002/mrc.4258

Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling

Adrien Le Guennec,^{a,b} Jean-Nicolas Dumez,^a Patrick Giraudeau^{b,c} and Stefano Caldarelli^{a,d}*

NMR is a powerful tool for the analysis of complex mixtures and the identification of individual components. Two-dimensional (2D) NMR potentially offers a wealth of information, but resolution is often sacrificed in order to contain experimental times. We explore the use of non-uniform sampling (NUS) to increase substantially the resolution of 2D NMR spectra of complex mixtures of small molecules, with no increase in experimental time. Two common pulse sequences for metabolomics applications are analysed, HSQC and TOCSY. Specific attention is paid to sensitivity in resolution-enhanced NUS spectra, using the signal-to-maximum-noise ratio as a metric. With a careful choice of sampling schedule and reconstruction algorithm, resolution in the ¹³C dimension for HSQC is increased by a factor of at least 32, with no loss in sensitivity and no spurious peaks. For TOCSY, multiplets can be resolved in the indirect dimension in a reasonable experimental time. These properties should increase the usefulness of 2D NMR for metabolomics applications by, for example, increasing the chances of metabolite identification. Copyright © 2015 John Wiley & Sons, Ltd.

In HFNMRC (general)

Easy steps for beginner :

- 1. Type "rpar" <enter> to load an appropriate parameter set
- 2. Type "getprosol" <enter> to load standard pulse values
- 3. Type "pulsecal" <enter> to do pulse calibration
- 4. Type "ns" <enter> to input number of scan
- 5. Type "rga" <enter> to find appropriate receiver gain
- 6. Type "zg" <enter> to collect spectrum
- 7. Type "ft" or "fp" <enter> to do Fourier Transfer
- 8. Click on phase to phase spectrum
- 9. Click on return, then save to save the spectrum
- 10. You data is done!!

In HFNMRC (practical)

- **Step 0: Set Temperature**
- **Step 1: Load sample**
- **Step 2: Match and Tune (wobb / atma)**
- **Step 3: Lock and Shimming (lock solvent / topshim)**
- **Step 4: Set up Experiment/Parameters**
- 1. Type "rpar" <enter> to load an appropriate parameter set
- 2. Type "getprosol" <enter> to load standard pulse values
- 3. Type "pulsecal" <enter> to do pulse calibration
- 4. Type "gs" to confirmed "o1" for solvent suppression
- 5. Set "user's parameters" for "specific experiments"
- 6. Type "rga" <enter> to find appropriate receiver gain
- 7. Type "zg" <enter> to collect spectrum
- 8. Data processing for "specific experiments"

Let's try to set up the following experiments

Standard Parameter Set	Pulse Program	Observed signals	Note
htnmr_ZGW5	zggpw5	Ligands	01 @H2O
htnmr_STD	stddiffesgp3.cf	Ligands	fq2list
htnmr_T1roh	t1roh2des_2013.cf	Ligands	vdlist

<Run 1>

Standard Parameter Set	Pulse Program	Observed signals	Note
htnmr_ZGW5	zggpw5	Ligands	01 @H2O

> Confirmed H2O frequency for best solvent suppression result

<Run 2>

Standard Parameter Set	Pulse Program	Observed signals	Note
htnmr_STD	stddiffesgp3.cf	Ligands	fq2list

"user's parameters" for "STD"

; ;d20: saturation time;d29: spinlock time [10 - 50 msec] ;d31: saturation time as executed ;I4: I4 = number of averages = (total number of scans) / NS ;I5: loop for saturation: p13 * I5 = saturation time ;NS: 8 * n ;DS: 4 ;td1: number of experiments ;NBL: NBL = number of irradiation frequencies ;define FQ2LIST (irradiation frequencies); (list has to be stored in "/u/exp/stan/nmr/lists/f1") Example: std_test ; units in Hz o 600.13 10000 470 ------

> "Processing scripts" for "STD" : std.cf

<<u>Run 3></u>

Standard Parameter Set	Pulse Program	Observed signals	Note
htnmr_T1roh	t1roh2des_2013.cf	Ligands	vdlist

"user's parameters" for "T1roh"

;l4: l4 = number of experiments = number of delays in vd-list ;NS: 8 * n ;DS: 4 ;td1: number of experiments ;define VDLIST

Example: t1roh.cf , unit is "sec"
0.01
0.1
0.2
0.4

"Processing scripts" for "T1roh" : t1roh.cf

