# **2003 NMR User Training Course**

National Program for Genomic Medicine High-Field NMR Core Facility, The Genomic Research Center, Academia Sinica 09/29-09/30, 2003

**09/30, 2003 Course Handout** 

# **Useful Topics for NMR Methodologies**

by

Wen-Jin Wu

#### Lecture I:

•Water suppression techniques

# Lecture II:

# Variant HSQC experiments Pulsed field gradient NMR

#### **Water Suppression Techniques**



Sample used throughout this lecture: 1 mM TEP-I in 90% H<sub>2</sub>O/10%D<sub>2</sub>O, pH 6.0, 290 K.

# **Water Suppression Technique**

- Presaturation
- •Watergate
- •Water flip-back
- •Jump and return, 1-1, 1331
- Suppression by coherence pathway rejection

# Water Suppression Technique in Protein NMR



#### pH Dependence of Amide Proton Exchange Rates

 $N-H + {}^{*}H_{2}O \longrightarrow N-{}^{*}H + {}^{*}H-O-H$ 



FIGURE 3.26 Intrinsic backbone amide proton exchange rates calculated according to Connelly *et al.* (63). The intrinsic exchange rate,  $k_{intr}$ , is shown for exchange of a backbone amide proton with (—) H<sub>2</sub>O or (--) D<sub>2</sub>O as a function of pH or pD. The pD values are corrected for isotope effects; uncorrected pH meter readings would be 0.4 units smaller.

Figure modified from p154 of John Cavanagh et al., "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

In practice: the pH value for a protein sample for NMR studies is kept below 7.5 to avoid fast exchange rates.



Parameter adjustment: Pulprog=zgpr Adjustment: pl9; power level for presaturation



•A field-gradient pulse is a pulse or a period during which the magnetic field is made deliberately inhomogeneous.  $B=B_0+B_g(z)$ 

•The magnetic field, generated by a gradient pulse,  $\rm B_{g}(z)$  varies linearly along the Z-axis

 $B_g(z)=zG_z$ , where  $G_z$ : gradient strength (G/cm), Z: z-axis position

•Viewing on the rotating frame, spins at different z-position acquire different phase (Larmor frequencies):  $\phi(z) = \gamma z G_z \tau$ , where  $\phi$ =phase,  $\gamma$ : gyromagnetic ratio,  $\tau$ : gradient duration

•Actively shielded gradient coil reduces eddy current, and is now popular in multidimensional NMR spectroscopy.



- A. Initially spins in each slice (isochromat) are "phase-coherence".
- B. After a field-gradient pulse, the spins at different slice experience different magnetic field strength, and acquire different Larmor frequencies. The "phase-coherence between slices is now lost due to Larmor precession.
- C. The coherence can be refocused by another gradient pulse (gradient echo).





(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999)

**y**-

### WATERGATE







•A strong Z-gradient pulse can be used to destroy transverse magnetization.

•A destroyed (dephased) magnetization can be refocused by another z-gradient pulse of the same amplitude but of opposite phase. (or use a 180 pulse in between the two identical zgradient pulse).

• $H_2O$ : the two extra selective 90 pulse on water makes the 2nd zgradient pulse act as another defocus gradient pulse.

•Protein signals: the 180 pulse makes the 2nd Z-gradient act as a refocus gradient.

Ref: M. Piotto, V. Saudek & V. Sklenar, J. Biomol. NMR 2, 661 - 666 (1992)

# WATERGATE



- Parameter adjustment, Pulprog=zgpgwg
- p11: pulse length for 90 degree shaped pulse
- sp1: power level for 90 degree shaped pulse
- spnam1: name of shaped pulse

For example: set spnam1=Sinc1.1000, p11=1 msec, Minimize the water fid by adjusting sp1 in the "gs" utility.

#### **WATERGATE V.S. Presaturation**





Sklenar et al., J. Magn. Reson., A102, 241-245 (1993)

- Off resonance DANTE excitation technique.
- 3-9-19:  $3\alpha$ - $\tau$ -9 $\alpha$ - $\tau$ -19 $\alpha$ - $\tau$ -3 $\alpha$ , where  $26\alpha$ =180,  $\tau$ =delay. (This is also referred as "W3".)



Delay  $\tau = 1/(4 \Delta \upsilon_{max})$ , where  $2\Delta \upsilon_{max}$ =distance of next null (Hz). (The delay  $\tau$  is field-dependent !!)

### **3-9-19 WATERGATE**

Delay  $\tau = 1/(4 \Delta \upsilon_{max})$ , where  $2 \Delta \upsilon_{max} =$  distance of next null (Hz). (The delay  $\tau$  is field-dependent !!)

For example: Have the center of NH region (i.e. 8.2 ppm) to be the center of maximal excitation region:

 $\tau = 1/[4^{*}(8.2-4.75)^{*}600.13] = 121$  usec @600 MHz machine  $\tau = 1/[4^{*}(8.2-4.75)^{*}500.13] = 145$  usec @500 MHz machine

Parameter adjustment: Pulprog=p3919 Set pl18=pl1, p27=p1, p0=p1 ;d19: delay for binomial water suppression ;d19 = (1/(2\*d)), d = distance of next null (in Hz)

Adjust d19 according to the magnetic field strength and where you want the center of maxima excitation to be.



# Water Flip-back WATERGATE



S. Grzesiek and A. Bax, J. Am. Chem. Soc., 115, 12593-12594 (1993)

•Water is aligned along the z axis before any z-gradient pulse (point "a"). So, it is not destroyed by the z-gradient pulse.

•This reduces the signal loss of exchangeable protons due to attenuation of water signal (saturation transfer).

#### Parameter adjustment: Pulprog=\*fp\*, i.e. "hsqcetfpf3gp" calibrate the shaped pulse as describe in WATERGATE.

# Pulse Sequence for Observing Fast-Exchanging Protons

 $N-H + {}^{*}H_{2}O \longrightarrow N-{}^{*}H + {}^{*}H-O-H$ 

Imino protons in DNA, hydroxyl protons (-OH), Histidine side chain protons in proteins are usually in a fast exchange process with water.

•Flip-back WATERGATE (marginal performance) •Jump and return 1-1

•1-3-3-1

### Jump and Return: 1-1



P. Plateau et and M. Gueron, al., J. Am. Chem. Soc. 1982, 104, 7310-7311



- Water signal: "on resonance", aligned to the "z" axis,
- **Protein signals:** free to precess on the transverse plan
- Peak Intensity:  $I_x Sin(\Omega \tau)$
- **Delay**  $\tau = 1/(4\Delta \upsilon_{max})$ ,  $\Delta \upsilon_{max}$ =distance of maxima intensity
- For example: To observe a peak at 14 ppm at 600 MHz, τ=1/[4\*(14-4.75)\*600.13]=45 usec

#### Parameter adjustment: Pulprog=p11

p1: 90 pulse, p0: 90 degree "return" pulse, adjust p0 to be slightly shorter than p1 (0.1-0.3 usec).

d19: d19= (1/(2\*d)), d = distance of next null (in Hz)

# Binominal: 1-3-3-1



P.J. Hore, J. Magn. Reson., 55, 283-300 (1983)

•Delay  $\tau = 1/(2\Delta \upsilon_{max})=1/d$ ,  $\Delta \upsilon_{max}$ =distance of maximal intensity d=distance of next null

•For example: To observe a peak at 14 ppm at 600 MHz,  $\tau=1/[2*(14-4.75)*600.13]=90$  usec

#### Parameter adjustment:

- Pulpro=p1331
- d19: delay for binomial water suppression
- d19 = (1/d), d = distance of next null (in Hz)=2\*distance of maximal intensity
- d19=τ as defined above



### Jump-Return 1-1 and Binominal 1-3-3-1



#### **Binomial excitation profiles of 1-1 and 1-3-3-1.**

John Cavanagh et al., page 154, "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

# Jump-Return 1-1 and Binominal 1-3-3-1

#### Both are for observing fast exchanging protons.

•1-3-3-1: Better water suppression (higher receiver gain), but with offset-dependent phase distortion

•1-1: low receiver gain, the dispersive tail of water interferes with the signals of interest.



### What are you trying to detect ?





# Water Suppression via Coherence Pathway Rejection

**Coherence pathway selected by gradients:** 

In a gradient selection experiment (echo/antiecho), the water coherence is not "refocused" by the refocus gradient (therefore, is not selected), this naturally suppression the water signal.

Example: cosydfetgp.1, hsqcetf3gp



field gradients



Figure from John Cavanagh et al., "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

# Practical Implementation: 1D, 2D and 3D

Fast exchangeable proton (His sidechain, -OH): 1-1 (good for 2D), 1-3-3-1 (not suitable for 2D, 3D).

**Exchangeable NH:** Water-flip-back HSQC, Fast-HSQC.

Signals ( $H_{\alpha}$ ) near water: (i.e. TOCSY, COSY) WATERGATE with selective pulse, echo-antiecho PFG.

# **Variant HSQC Experiments**

#### by Wen-Jin (Winston) Wu

National Program for Genomic Medicine High-Field NMR Core Facility, The Genomic Research Center, Academia Sinica



### **Coherence Order**

- Zero quantum coherence: I<sub>z</sub>S<sub>z</sub>...etc
- Single quantum coherence:  $I_x S_{z_1} I_y S_{z_2} I_z S_y$  ... etc
- Double quantum coherence:  $I_x S_{x, j} I_x S_{y, j}$ ...etc
- Triple quantum coherence:  $I_x K_x S_{x,j} I_x K_x S_y$  ... etc
- **HSQC**: Hetero-nuclear single quantum coherence.
- HMQC:Hetero-nuclear multiple quantum coherence.

# **Scalar Coupling (J-Coupling)**



•Scalar couplings (J-couplings) are used as basic magnetization transfer in correlation spectroscopy.

•The efficiency of transfer depends on the magnitude of Jcoupling constants.

# **HMQC VS HSQC**

- HMQC:Hetero-nuclear multiple quantum coherence. Schem a.
- $2\tau = 2*(1/4*J_{IS})$
- N-H: 2\*[1/(4\*90)]=5.5 ms
- C-H: **2**\*[1/(4\*140)]=**3.6** ms

- HSQC: Hetero-nuclear single quantum coherence. Scheme b. •Intensity:  $2I_zS_ysin(2\pi J_{IS}t)$ . Maximal intensity with t=1/4J<sub>IS</sub>
- $\tau = 1/4 * J_{IS}$
- N-H: 1/(4\*90)=2.7 ms
- C-H: 1/(4\*140)=1.8 ms



# **HSQC: Adjustment of J-Evolution Time**



Page 412, John Cavanagh et al., "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

τ=(1/4J<sub>IS</sub>)



To compensate for relaxation loss, adjust the length of delay according to correlation time (i.e. molecular weight) of your proteins.

### **Constant-Time HSQC**



Page 412, John Cavanagh et al., "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

Spectral resolution can be compromised by passive J-coupling.
The resolution of a <sup>1</sup>H, <sup>13</sup>C correlation (i.e. HSQC) can be enhanced by removing the passive C-C J-coupling (35 Hz) using a "constant time" scheme.

### Resolution Enhancement by the Constant Time Scheme



Page 439, John Cavanagh et al., "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

#### **Sensitivity Improvement in HSQC**



**HSQC** Only either  $2I_xS_y$  or  $2I_zS_x$  is refocused. Pulprog=hsqcf3ph

**PEP-HSQC** 

(PEP: preservation of equivalent pathway) Both  $2I_xS_y$  and  $2I_zS_x$  are refocused. (2)<sup>1/2</sup> increase in sensitivity without considering relaxation



Page 441 of John Cavanagh et al., page 154, "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

### **HSQC With Different Water Suppression Schemes**



Water is kept along the Z-axis in both B and C before the final dephasing sequence to avoid saturation transfer.

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995)

#### **HSQC With Different Water Suppression Schemes**



Series of 1D HSQC spectra for 10 mM <sup>15</sup>N-N-acetylalanine (pH 9.2) with different recycling delay.

Figures from Mori et al., J. Mag. Reson. B 108, 94-98 (1995)

#### **Practical Usage of Experiments Containing HSQC**

•Saturation Transfer: avoid saturating water signal, especially at neutral pH.

•Relaxation: Extra pulse sequence length in "sensitivity enhanced" HSQC can cause sensitivity loss due to  $T_2$ relaxation. This is particularly serious for large proteins (>20 kDa).

# Transverse Relaxation-Optimized Spectroscopy (TROSY)

- Constructive canceling of transverse relaxation caused by chemical shift anisotropy (CSA) and by dipole-dipole coupling at high magnetic field.
- Each of the four multiplet components of <sup>15</sup>N-<sup>1</sup>H correlation components has different relaxation rates (line width).
- Select only the narrowest component (1 out of 4).

### **TROSY at 750 MHz**



Pervushin et al. v94, p12366,1997 PNAS USA

#### **The Resolution Power of TROSY**



Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

### **TROSY Effect is Field-Dependent**



#### **Optimal field strength:** 1 GHz for NH; 600 MHz for aromatic moieties (500-800 MHz).

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

# TROSY

#### Pulprog=trosyf3gpph19, trosyf3gpphsi19

#### TROSY-HSQC

**HSQC** 



Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

# **Some Notes on TROSY**

- Intrinsic sensitivity loss by just selecting ¼ component.
   (worth doing it when T<sub>2</sub> relaxation is fast for large proteins).
- At the present time, at least 8-step of phase cycling is required to achieve coherence pathway selection.
- TROSY effect is field strength-dependent. Optimal field strength: 1 GHz for NH; 600 MHz for aromatic moieties (500-800 MHz).
- TROSY effect is well suited for large molecule.

"NMR analysis of a 900K GroEL-GroES complex." Flaux et al., Nature V. 418, 11, p207 (2003)

#### •Solvent suppression.

#### •Artifact suppression.

Have the coherence of interested align along the z-axis, then destroy any unwanted signals left on the transverse plan.

#### •Coherence pathway selection.

Select coherence pathway of interested in one single scan instead of 8 or 16 as in phase cycling. More number of increments can be used in 3D, 4D experiment: higher resolution.

•Diffusion measurement to study aggregation.

### **Pulsed Field Gradient**

Bg

Z=0

-B<sub>g</sub>

•A field-gradient pulse is a pulse or a period during which the magnetic field is made deliberately inhomogeneous.  $B=B_0+B_g(z)$ 

•The magnetic field, generated by a gradient pulse, Bg(z) varies linearly along the Z-axis

**B**<sub>g</sub>(z)=zG<sub>z</sub>, where G<sub>z</sub>: gradient strength (G/cm), Z: z-axis position

Viewing on the rotating frame, spins at different z-position acquire different phase (Larmor frequencies):
 φ(z)=γzG<sub>z</sub>t,
 where γ: gyromagnetic ratio, τ: gradient duration

A coherence can be dephased by a strong pulse field gradient.
A dephased coherence can be refocused by a refocus-gradient providing the "overall phase change " is zero.

- $\phi_i \text{+} \phi_f \text{=} 0$  ;Coherence refocused.
- $\phi_i \text{+} \phi_f \neq 0$  ;Coherence dephased.



(figure from p106 of Sattler et al. Prog. In Nucl. Mag. Reson. Spect. 34 (1999)

**y**-

#### **Coherence Pathway Pathway Selection by PFG**

 $\Phi_i = G_i P_i \gamma_i$  (phase acquired after the first gradient)  $\Phi_f = G_f P_f \gamma_f$  (phase acquired after the second gradient)

 $G_i = s_i B_g \tau_i$  (gradient term)  $P_i$ : coherence order,  $\gamma$ :gyromagnetic ratio  $\tau_i$ :gradient pulse length,  $S_i$ : shape factor of a gradient pulse (what kind of shaped pulse).

| <b>Coherence Selection by Gradient:</b> |                                                        | t 2t<br>field gradients |
|-----------------------------------------|--------------------------------------------------------|-------------------------|
| If $\Phi_i + \Phi_f = 0$                | ;Coherence is refocused (selected).<br>(gradient echo) | +2                      |
| lf Φ <sub>i</sub> + Φ <sub>f</sub> ≠ 0  | ;Coherence is dephased (rejected).                     | -1                      |

**Example:** Selection of the coherence pathway p=2 to p=-1 by PFG.  $\Phi_i=1*2*1+2*(-1)*1=0$ 

Figure from Page 225 of John Cavanagh et al., page 154, "Protein NMR Spectroscopy: Principles and Practice", Academic Press (1995)

#### **PFG-NMR: Coherence Selection, Artifact Suppression**





FIG. 1. Examples of different applications of pulsed field gradients in heteronuclear NMR. (a) Selection of an  $I_z S_z$  intermediate, (b) selection of transverse S-spin magnetization which is being refocused by a 180° pulse, and (c) elimination of transverse S-spin components caused by an imperfect 180° (S) decoupling pulse.

$$I_x S_z \xrightarrow{90_y^\circ(I)} - I_z S_z \xrightarrow{90_y^\circ(S)} - I_z S_x.$$
 [1a]

Unwanted magnetization is associated with terms such as

$$I_y S_z \xrightarrow{90_y^{\circ}(I)} (I_y S_z) \xrightarrow{90_y^{\circ}(S)} I_y S_x$$
 [1b]

$$I_{y} \xrightarrow{90^{\circ}_{y}(I)} I_{y} \xrightarrow{90^{\circ}_{y}(S)} I_{y} \qquad [1c]$$

or

$$I_x \xrightarrow{90_y^{\circ}(I)} - I_z \xrightarrow{90_y^{\circ}(S)} - I_z.$$
 [1d]

**Example "a": Destroy the "unwanted" components with a Z-gradient pulse when they are on the transverse plan and the component of interest is a long the z-axis.** 

A. Bax & S. Pochapsky, J. Magn. Reson. 99, 638-643 (1992)



 $D_s = kT/6\pi\eta r_s$   $r_s$ : hydrodynamic radius

Different size of molecules have different self-diffusion coefficients D<sub>s</sub>.

# $I_{(2\tau)} = I_0 * \exp[-(\gamma \delta G)^2 (\Delta - \delta/3) D_s]$

γ: gyromagnetic ratio; δ: gradient duration; G: gradient strength, Δ: time between gradient pulse,  $I_0$ : signal intensity in the absence of gradient

Monitor signal intensity as a function of either gradient duration or gradient strength.  $D_s$  can then be obtained by nonlinear-squares fits to the above equation.