Advanced NMR Training Course: February 27th, 2004

National Program for Genomic Medicine High-Field NMR Core Facility, The Genomic Research Center, Academia Sinica

Course Topic: Cryogenic Probes

by

Wen-Jin Wu, Ph.D.

500 MHz CryoProbe System in Academia Sinica

Overview

Bottom part of the probe

•5 mm TXI Z-gradient CryoProbe

Laptop for monitoring the CryoProbe system

2

CryoProbeTM Systems in Academia Sinica

- •¹H Coil and preamplifier are cooled to 30 k and 77 k respectively.
- •Low resistance and low thermal noise: sensitivity increases 3-4 fold relative to conventional room temperature probeheads.
- •5 mm TXI Z-gradient CryoProbe.

•Signal-to-noise: Measurement of 0.1% ethylbenzene in CDCl₃ (200 Hz noise region)

Sensitivity of a Cryogenic Probe

- S/N ~ $1/(T_cR_c + T_a[R_c + R_s] + T_sR_s)^{1/2}$
- T_c: temperature of the coil
- R_c: resistance of the coil
- T_s: temperature of the sample
- R_s: resistance added to the coil by the sample
- T_a: noise temperature of the preamplifier
- For a room temperature probe: $T_c \sim 298$ k, $T_a \sim 298$ k
- For a cryogenic probe: $T_c \sim 30 \text{ k}$, $T_a \sim 77 \text{ k}$
- Sensitivity is enhanced by the lowered temperature, and lowered resistance.

Sensitivity Evaluations of the 500 MHz TXI CryoProbe

The S/N from 0.1% ethylbenzene in CDCl₃ looks very promising; however, how about the sensitivity for aqueous samples?

Sensitivity measurements for the CryoProbe: (1). Simple 1D spectra of aqueous samples.

(2). 2D homonuclear spectra in D_2O .

(3). 2D homonuclear spectra in H_2O (water is harder to suppress on a cryogenic probe.).

(4). 2D ¹H, ¹⁵N-HSQC of proteins in H_2O .

(4). Effect of conducting salts on the sensitivity of a CryoProbe.₅

Sensitivity Comparison in D₂O: Simple 1D spectra.

1D spectrum of 2 mM Sucrose in D₂O:

S/N ratio (500 CryoProbe): S/N ratio (600 MHz RT probe)=2.3:1

Sensitivity Comparison in H₂O : 2D TOCSY

S/N ratio (500 CryoProbe): S/N ratio (600 MHz RT probe)=2.2:1

Note: Better water suppression can be obtained by using excitation sculpting on a cryoprobe.

8

CryoProbe V.S. Room Temperature Probe

Sensitivity improvement: CryoProbe/Old RT TXI: 3.1:1

First increment of a ¹H, ¹⁵N-HSQC (sensitivity enhanced version, pulprog=hsqcetf3gpsi2) of ¹³C, ¹⁵N-LBD in 50 mM phosphate/100 mM NaCl) at pH 7.3, 298 K.

•Sensitivity enhancement by the CryoProbe is yet to be evaluated for protein sample containing low conducting salts.

CryoProbe V.S. Room Temperature Probe

Fist 2D ¹H, ¹³C plane of a 3D HN(CO)CA experiment. 1 mM,16 kDa protein. Data from Dr. Lou, Y-C (Dr. Chin-Pan Chen's lab) of IBMS, Academia Sinica.

Sensitivity Gain by CryoProbes

Our 500 MHz ¹H {¹³C,¹⁵N} TXI CryoProbe: ¹H at cryo-temperature, ¹³C, ¹⁵N at R.T.

• Experiments that can gain sensitivity: All ¹H detection, inverse experiments with proton excitation and detection.

Our 600 MHz ¹H {¹³C,¹⁵N} TCI CryoProbe: ¹H and ¹³C (preamp.) at cryo-temperature, ¹⁵N at R.T.

- 4-fold sensitivity for ¹H AND ¹³C
- Sensitivity gain: All ¹H detection, ¹³C detection (compared to RT-TXI probe), inverse experiments with ¹H or ¹³C excitation and detection.

Slide from Bruker.

Slide from Bruker.

¹³C-detection in biomolecular NMR spectroscopy

¹³C-¹³C-TOCSY

1mM ¹⁵N,¹³Clabeled ubiquitin

Recorded with the CryoProbes, as follows:

a) 500MHz DUL

b) 600MHz TCI, ¹⁵N decoupled

Slide from Bruker.

¹³C-detection in biomolecular NMR spectroscopy

Slide from Bruker.

15

Strategies for Backbone Assignment of Large Proteins

#1 TROSY-HNCA, TROSY-HNCO and MQ-HACACO (¹³C-obs.)

Pervushin & Eletsky, J. Biomol. NMR, 25 (2003) 147-152

#2 TROSY-HNCO, TROSY-HN(CA)HA, MQ-HACACO (¹³C-obs.) Hu, Eletsky & Pervushin J. Biomol. NMR, 26 (2003) 69-77

•Set of experiments with both, ¹H and ¹³C-detection

•Best sensitivity therefore required for both, ¹H and ¹³C

•TCI CryoProbe offers an elegant solution

This slide is modified from Bruker's slides.

New Strategies for Backbone Assignment of Large Proteins

MQ-HACACO with direct ¹³**C-detection** 1 mM, 35%-²H,¹³C,¹⁵N-labeled chorismate mutase 44 kDa

TXI CryoProbe 600MHz

favourable MQ relaxation properties
signal detection via the carbonyl-C antiphase doublet

Pervushin & Eletsky, J. Biomol. NMR, 25 (2003) 147-152

First 2D plan of a 3D MQ-HACACO , (22 hr acquisition time). 600 MHz CryoProbe.

Combined HNCA/HNCO for ¹⁵N labeled protein with ¹³C at Natural Abundance

Both the 500 MHz and 600 MHz CryoProbes Have ²H Decoupling Capacity.

First 15N plan (1H, 13C) of constant time-HNCA experiments for ²H, ¹³C, ¹⁵N-Didomain, (pH 7.5, 295 K). NS=32. AV600-IBMS.

Effects of Salts on the Sensitivity of a CryoProbe

4824 J. Am. Chem. Soc., Vol. 122, No. 19, 2000

Flynn et al. J. Am. Chem. Soc., 2000, 122, 4823-4824

Effects of Different Types of Conducting Salts on the Sensitivity of a CryoProbe

The decisive factor in degrading the sensitivity of a cryogenic probe is not just the salt concentration itself but the conductivity which is a function of both the concentration and the mobility of the salts.

Figure 3. One-dimensional spectra of a 1 mM lysozyme sample measured in 50 mM sodium phosphate, 50 mM HEPES/NaOH, or 50 mM MOPS/BIS-TRIS propane buffer, all pH 7, and in 50 mM MES/BIS-TRIS, pH 6.0. Only the most high-field-shifted regions of the spectra are shown.

Reference: Kelly et al., J. Am. Chem. Soc. (2002), v124, 12013.

Standard Working Parameter Sets for the CryoProbe

Standard working parameter sets for most routine experiments have been generated using ¹³C, ¹⁵N-LBD. Users can quickly set up their experiment with minimal parameter modification.

- 1D Proton
- 2D Homonuclear Experiments
- 2D Heteronuclear Correlation Experiments
- 3D Heteronuclear Editing Experiments
- **3D** Triple Resonance Backbone Experiments
- 3D Sidechain Resonance Experiments

All standard parameter files for the CryoProbe start with the words "CRP" General syntax: CRP_nD_ExperimentType_PulseSequence_ExtraInfo.

For Example:

- CRP_1D_ZGPGWG
- CRP_2D_15N_HSQC_hsqcf3gpph19
- CRP_3D_HNCA_hncagpwg3d

CryoProbe Usage Notes

Instructions

NMR-Applications

Typical Pulses for the 5 mm CryoProbeTM 500MHz and 600MHz

Purpose	3
Scope	3
Reference to Documents	3
Implementation	3
Introduction	3
Pulse and power recommendations	4
Notes	5
	PurposeScope Reference to Documents Implementation Introduction Pulse and power recommendations Notes

- Follow the pulse and power limitation (next two pages) ! and our Facility's instructions.
- No simultaneous hard pulses on ¹⁵N and ¹³C, if so, a 3 dB extra attenuation is needed. (most Bruker XWINNMR 3.5 use shaped ¹³C pulses). So, no foreign pulse sequences unless approved by us.
- Due to probe design, water suppression is more difficult.

Pulse and Power Recommendations for CryoProbeTM

Note: All values require a minimum repetition period d1+aq of 1sec²) <u>Important:</u> observe the separate notes on the following pages!

	5mm 500MHz TXI CryoProbe TM	5mm 600MHz TXI CryoProbe TM
¹ H		
hard pulse ³⁾	8.0 µsec	8.0 µsec
(max. length 360°)	-	
hard pulse for lossy	Power level corresponding to 8.0 µsec	Power level corresponding to 8.0 µsec
samples	pulse for non-lossy sample	pulse for non-lossy sample
trim pulse p28 ⁴⁾	2 msec @ 10 μsec	2 msec @ 10 μsec
TOCSY spin lock ⁵⁾	200 msec @ 25 µsec	200 msec @ 25 µsec
	400 msec @ 35 µsec	400 msec @ 35 µsec
ROESY spin lock	Up to CW for power level	Up to CW for power level
	corresponding to a 100 µsec pulse	corresponding to a 100 µsec pulse
WALTZ16 decoupling	Up to CW for power level	Up to CW for power level
during 13C-detection	corresponding to a 100 µsec pulse	corresponding to a 100 µsec pulse
DIPSI2-decoupling in	400 msec @ 50 μsec	400 msec @ 50 μsec
triple resonance		
¹³ C		
hard pulse ⁶⁾	15.0 µsec	15.0 µsec
(max. length 360°)		
trim pulse ⁵⁾	2 msec @ 25 μsec	2 msec @ 25 μsec
CC spin lock ⁵	20 msec @ 25 μsec	20 msec @ 25 μsec
GARP decoupling ⁷⁾	140 msec @ 65 µsec	140 msec @ 55 μsec
selective pulses ⁸⁾	Q5: 320 µsec	Q5: 320 µsec
	Q3: 256 µsec	Q3: 256 µsec
	CHIRP: 2 ms @ 25 µsec	CHIRP: 2 ms @ 25 μsec
¹⁵ N		
hard pulse ⁶⁾	40.0 µsec	40.0 µsec
(max. length 360°)		· · · · · · · · · · · · · · · · · · ·
WALTZ16 decoupling ⁷⁾	140 msec @ 200 μsec	140 msec @ 170 μsec

¹⁵ N		
hard pulse ⁶⁾	40.0 µsec	40.0 µsec
(max. length 360°)		
WALTZ16 decoupling ⁷⁾	140 msec @ 200 µsec	140 msec @ 170 μsec
CPMG T2 ⁹⁾	250 msec @ 80 μ sec (see warning ⁹⁾)	250 msec @ 80 μ sec (see warning ⁹⁾)
² H		
hard pulse	150 usec	150 usec
(max. length 360°)	· · · · · · · · · · · · · · · · · · ·	
WALTZ16 decoupling	100 msec @ 250 µsec	100 msec @ 250 μsec
Z-Gradient		
Absolute max. current ¹⁰⁾	10 A	10 A
Max.overall length ¹¹⁾	10 ms @ 10 A	10 ms @ 10 A

Table 1

Pulse and Power Recommendations for CryoProbeTM

Warning !!

Since 15N T2 measurements use CPMG (trains of hard 15N pulse with very short interval delays), excessive heating can occur and may damage the Cyroprobes. No such type of experiments shall be performed on our CryoProbe systems !!