

Advanced NMR Training Course: February 27th, 2004

National Program for Genomic Medicine High-Field NMR Core Facility, The Genomic Research Center, Academia Sinica

Course Topic: TROSY and NMR of Large Proteins

by

Wen-Jin Wu, Ph.D.

1

Size Limit on Solution NMR

Molecular weight distribution of the NMR structures deposited in the PDB as 12/1997

P. Gunter, *Q. Rev. Biophys*, 1998, v31, p145

Pictures from M. Sattler, http://www.embl-heidelberg.de/nmr/sattler/teaching/

NMR hardware, new NMR methods, advanced in molecular biology

- Isotope labeling (¹⁵N, ¹³C), 3D, 4D triple resonance experiments: overlap
- NMR hardware: bigger magnets (overlap, s/n)
- Cryogenic probe: s/n (optimal 4-fold increase)
- TROSY, CRINPT: overlap, s/n
- Deuteration: overlap, s/n
- Selective isotope labeling: overlap
- Line-narrowing by low viscosity solvent: overlap, s/n
- Segmental Labeling: overlap
- Residual dipolar coupling: extra angle and long distance information
- Cross saturation: identify binding surface

Impact of TROSY on Solution NMR

Fernandex and Wider, Current Opinion in Structural Biology 2003, 13:570-580

Application of TROSY NMR on Biological Systems

Figure from K. Pervushin in *EMBO Practical NMR Course 2003* http://www.embl-heidelberg.de/nmr/sattler/embo/coursenotes.html

The estimated range of molecular weights of biological systems the most effectively studied by TROSY NMR

- 1. Main relaxation source for ¹H and ¹⁵N: dipole-dipole (DD) coupling and, at high magnetic fields, chemical shift anisotropy (CSA).
- 2. Different relaxation rates (line width) for each of the four components of ¹⁵N-¹H correlation.
- 3. The narrowest peak (the blue peak) is due to the constructive canceling of transverse relaxation caused by chemical shift anisotropy (CSA) and by dipole-dipole coupling at high magnetic field.
- 4. TROSY selectively detect only the narrowest component (1 out of 4).

TROSY-HSQC and Conventional HSQC

TROSY-HSQC

TROSY-HSQC

(1) No ¹H decoupling during ¹⁵N evolution.

(2) No ¹⁵N decoupling during ¹H acquisition.

(3) Use the TROSY-HSQC pulse sequence to selectively observe the most slowly relaxing component.

HSQC

In both ¹H and ¹⁵N dimensions, both J-split components are mixed by hetero-nuclear decoupling. This collapses each ¹⁵N and ¹H doublet into a single peak in each dimension.

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

•DD relaxation is field-independent. However, $CSA \propto B_0^2$, therefore at high magnetic fields, CSA relaxation can be comparable to DD relaxation, and the interference effect on relaxation can be observed.

TROSY, 40 kDa, 750 MHz

Linewidrh: 60% reduction in ¹H, 40% reduction in ¹⁵N

If perdeuterated: Expected reduction 40-fold for ¹H & 10-fold for ¹⁵N

Pervushin et al. PNAS USA, v94, p12366 (1997)

The Sensitivity and Resolution Gain by TROSY and Deuteration

u-²H,¹⁵N-Gyrase-45 (45 kDa), 750 MHz

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

•Relaxation rate for the narrowest component of the doublet:

 $R_{1212} = (p - \delta_S)^2 (4J(0) + 3J(\omega_S)) + p^2 (J(\omega_I - \omega_S) + 3J(\omega_I) + 6J(\omega_I + \omega_S)) + 3\delta_I^2 J(\omega_I),$

TROSY Application

- The implication of TROSY technique is revolutionary and wide spreading for large molecules (>20 KDa). Virtually all ¹H,¹⁵N-HSQCbased double resonance and triple resonance experiments gain sensitivity and spectral resolution via TROSY.
- Salzmann et al., "TROSY in triple-resonance experiments: New perspectives for sequential NMR assignment of large proteins" *PNAS USA*, v95, 13585-13590 (1998).
- D. Yang and L.E. Kay, *JACS*, "TROSY Triple-Resonance Four-Dimensional NMR Spectroscopy of a 46 ns Tumbling Protein "
- Salzmann et al., "NMR Assignment and Secondary Structure Determination of an Octameric 110 kDa Protein Using TROSY in Triple Resonance Experiments", JACS, 122, 7543-7548 (2000).

Pushing the Size Limit by TROSY ,Deuteration, and Selective Isotope Labeling

>95% ¹H, ¹⁵N, ¹³C_{α}, ¹³CO, ¹³C_{β} assigned !!!

Tugarinov et al, *JACS*, 2002, 124, 10025-10035

3D NOESY-[¹H, ¹⁵N, ¹H]-ZQ-TROSY

7.92

7.72

8.35

 $\omega_3 (^1 H^N)$

[ppm]

- 8.80

7.95

8.63

7.95

8.60

- 7.76

- 9.52

<u>NOESY-</u> [¹H, ¹⁵N, 1H]-ZQ-TROSY

110 kDa, [70% ²H, U-¹⁵N]-DHNA

Diagonal peaks in NOESY are suppressed !

Pervushin et al. *PNAS USA*, V96, P9607, (1999)

This technique has become very popular for drug screening since binding mainly occurs on the surface of a protein.

Deuteration

- Reduce relaxation ($\gamma_{D//}\gamma_{H} = 1/6.5$). (a maximal 16 fold reduction).
- Reduce number of signals.
- Suppress spin-spin diffusion

Impact of Deuteration on Relaxation and Sensitivity

Figure from M. Sattler, http://www.embl-heidelberg.de/nmr/sattler/teaching/

Some Notes on TROSY

- Intrinsic 50% loss in sensitivity (the sensitivity improved version*) due to rejection of some coherence pathway. However, for large proteins (>20 kDa) at high magnetic fields, the detection of the most slowly relaxing peak compensates for the loss of sensitivity. Instead sensitivity and resolution are both gained.
- TROSY effect is field strength dependent. Optimal field strength:
 1 GHz for amide NH; 600 MHz for aromatic moieties (500-800 MHz).
- Minimal of phase cycling need to be complete for the selection of the narrowest component. (1 out of 4).
- The larger a protein (< 200 kDa), the more pronounced linenarrowing effect by TROSY.

*Pervushin et al., J. Biomol. NMR, 1998, 12:345-348

•Due to very fast transverse (T2) relaxation for large proteins (>200 kDa). TROSY via INEPT through-bond scalar coupling transfer becomes inefficient.

•For M.W. >200 kDa, use cross correlation between dipole-dipole coupling and CSA relaxation to transfer in-phase ¹H coherence to ¹⁵N coherence in ¹⁵N-¹H moieties (CRIP).

•Cross relaxation enhanced polarization transfer (CRINEPT=CRIP+INENP) become more effective for very large molecules.

•Riek et al. "Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules", PNAS USA V96, 4918-4923, 1999.

<u>CRIPT or CRINEPT Offers Higher Sensitivity</u> for Very Larger Molecules (>200 kDa)

INEPT: Insensitive nuclei enhanced by polarization transfer

CRIPT: Cross relaxationinduced polarization transfer (between DD coupling and CSA relaxation).

CRINEPT: Cross relaxationenhanced polarization transfer (CRIPT+INEPT)

CRINEPT-TROSY for Very Larger Molecules (>200 kDa)

[¹⁵N,¹H]-CRINEPT

-TROSY

[¹⁵N,¹H]-CRINEPT-HMQC-[¹H]-TROSY [¹⁵N,¹H]-TROSY

In (b): No splitting in the ¹⁵N dimension since ¹J_{NH} is decoupled during the ¹⁵N evolution.

TROSY

A 470 kDa Complex by Solution NMR

CRIPT-TROSY

Fiaux et al. (2002) Nature, v418, p207

900 kDa Complex by Solution NMR

Simplify Spectra by Segmental Labeling

Only one out of several domains is isotope labeled. Spectra are therefore simplified.

Xu et al, PNAS USA, 1999, V96, P388

Figures borrowed from J.H. Prestegard in **"Nature Structural Biology**, NMR Supplement, 1998, v5, p517-522

•Measure θ from residual dipolar coupling to provide additional structural constrain.

•Usually residual dipolar coupling is averaged to zero due to the isotropic motion of a protein in solution.

•Align a paramagnetic protein by high magnetic field strength. (Tolman et al. (Prestegard's lab), *PNAS USA*, 1995, V. 92, P9279).

•Introduce (enhance) anisotropy by orienting a protein in liquid crystalline medium. (Tjandra and Bax, *Science*, 1997, V 278, p1111)

Residual Dipolar Coupling

3' 3' 5'

•Residual dipolar coupling introduces an extra splitting in the ¹⁵N dimension in a non-¹H decoupled HSQC spectra.

Tolman et al. *PNAS USA*, (1995), V. 92, P9279

Angle: Structural Refinement ; relative orientation

Long Distance Measurement:

Inter-nuclear distance up to 12 A was measured by residual dipolar coupling.

Boisbouvier et al. *PNAS USA*, (2003) vol. 100, 11333-11338

NMR of Encapsulated Proteins Dissolved in Low-

Viscosity Fluids

Figure from W. Westler at NMRFAM

•To arrange for a protein to tumble at a faster rate (smaller t_c) by reducing the viscosity of the bulk solvent.

• η^{propane}=0.1*η^{H2O}

•Use the reverse micelle technique to solublize proteins.

•Pioneered by J. Wand's lab.

Wand et al., **PNAS USA**, 1998, V 95, P15299

High Pressure Mixing Apparatus for Preparing Protein Sample Under Pressure

Designed for preparing protein samples in liquid propane

<u>W.-J. Wu</u>, G. Vidugiris , E. S. Mooberry, W. M. Westler, J. L. Markley, "Mixing apparatus for preparing NMR samples under pressure," *J. Magn. Reson.* 164, 84-91 (2003)

Native-Like Structure for Chymotrypsin-Bound ¹⁵N-OMTKY3 in Reverse Micelles Dissolved in Propane

600 MHz ¹H, ¹⁵N-HSQC spectra of chymotrypsinbound ¹⁵N-OMTKY3

<u>W.-J. Wu</u>, *J. Magn. Reson.* 164, 84-91 (2003)

The residues of protein I at the interfaces acquires change in ¹H, ¹⁵N chemical shifts due to saturation transfer from protein II.

H. Takahashi et al., Nature Structural Biology, (2000) V7, pp 220 - 223

Cross Correlation and TROSY Effect

- Cross correlation: Two different types of interactions interacts with each other. DD-DD, DD-CSA, CSA-CSA cross correlation. (compared to "Cross relaxation: NOEs")
- TROSY takes advantage of the interference relaxation between chemical shift anisotropy (CSA) and dipole-dipole coupling (DDcoupling) for large molecules at high magnetic fields.

How does the "line-narrowing" (reduction in line width) occur?

- σ is directly related to the electron density at a distance r from the nucleus by Lamb's equation.
- 2. There are three principle components of the tensor: σ_{11} , σ_{22} , σ_{33} (or σ_{xx} , σ_{yy} , σ_{zz}).
- 3. Isotropic shift tensor: $\sigma_{iso}=1/3 (\sigma_{11}+\sigma_{22}+\sigma_{33})$.
- 4. The shift tensor σ is related to the Larmor frequency ω_0 : $\omega_0 = B_0(1 \sigma) \gamma/2\pi$

Figures taken from p34 and p40 of "Biomolecular NMR Spectroscopy" by Jeremy N.S. Evans

Transverse Relaxation and TROSY

Let I-S = H-N

Consider two scalar coupled spines 1/2, I and S

$$p = \frac{1}{2\sqrt{2}} \gamma_{\rm I} \gamma_{\rm S} \hbar / \Gamma^3_{\rm IS}$$

DD coupling between spin I and spin S

$$\delta_{I} = \frac{1}{3\sqrt{2}} \gamma_{I} B_{0} \Delta \sigma_{I} \qquad \qquad \delta_{S} = \frac{1}{3\sqrt{2}} \gamma_{S} B_{0} \Delta \sigma_{S}$$

Chemical shift anisotropy of I and S

 $\gamma_{I,} \gamma_{s}$: gyromagnetic ratios of I and S; \hbar : Plank constant / 2π ; r_{IS} : inter-nuclear distance between I and S; B_{0} : magnetic field strength $\Delta \sigma_{I,} \Delta \sigma_{s}$: the differences between the axial and the perpendicular principlecomponents of the axially symmetric chemical shift tensors of I and S.

 $\gamma^{1H} \sim 10 * \gamma^{15N}$, $\gamma^{1H} \sim 4 * \gamma^{13C}$, $\gamma^{1H} \sim 6.5 * \gamma^{2H}$

Transverse Relaxation and Interference Effect by Cross Correlation between DD and CSA

$$R_{1212} = (p - \delta_S)^2 (4J(0) + 3J(\omega_S)) + p^2 (J(\omega_I - \omega_S) + 3J(\omega_I) + 6J(\omega_I + \omega_S)) + 3\delta_I^2 J(\omega_I),$$

 $R_{3434} = (p + \delta_S)^2 (4J(0) + 3J(\omega_S)) + p^2 (J(\omega_I - \omega_S) + 3J(\omega_I) + 6J(\omega_I + \omega_S)) + 3\delta_I^2 J(\omega_I),$

•R₁₂₁₂ and R₃₄₃₄ are the transverse relaxation rates of the individual components of the "S" doublet (i.e. ¹⁵N, and let 1H^N be the "I" spin) in a single quantum spectrum.

•J(w) represent the spectral density functions at the frequencies indicated.

•In the slow-tumbling limit, only terms in the J(0) need to be considered.

•Recall that J(w) is the power (energy) available to bring about relaxation as a function of molecular tumbling.

•If CSA and DD coupling are comparable, i.e. $p \approx \delta_s$, The relaxation rate of R_{1212} becomes small (slow relaxation), and the resonance at ω_s^{12} relaxes slowly even for large molecules.

Relaxation of Transverse Magnetization:

Figure modified from that by C. Griesinger with permission.

http://www.embl-heidelberg.de/nmr/sattler/embo/handouts/griesinger_lecture_ccr.pdf

Dipolar Relaxation: $(3\cos^2\theta - 1)/2$

Figure modified from that by C. Griesinger with permission.

Dipolar Relaxation II

Figure modified from that by C. Griesinger with permission.

CSA Relaxation of S and Dipolar Coupling between I and S: Interferrence by Cross Correlation

Figure modified from that by C. Griesinger with permission.