2004 NMR User Training Course

High-Field Biomacromolecular Solution NMR Core Facility National Research Program for Genomic Medicine

Date: September 06, 2004 (Monday)

Place: B1C Lecture Room, IBMS, Academia Sinica, Taipei

Title: Basic NMR Operation for Beginners

09:00-09:50	Lecture 1: Basic NMR Concept and Facility Overview (Dr. Chi-Fon Chang, Facility Manager)
10:00-10:50	Lecture 2: Steps for NMR Experiments – small molecule (organics) (Dr. Casper Wu, Rezwave Application Scientist)
11:00-11:50	Lecture 3: Steps for NMR Experiments – larger molecule (biomolecules) (Dr. Wen-Jin Wu, Facility Staff Scientist)
13:00-13:30	Data Collection using Xwinmr (Dr. Chi-Fon Chang)
13:30-14:00	Brief Introduction on Xwinplot (Dr. Casper Wu)
14:00	Hands On B2, IBMS or B1, CHEM (Tsun-Ai Yu, Pei-Ju Fang, Wen-Jin Wu, Casper Wu, Chi-Fon Chang)

NMR Core Facility Overview

Chi-Fon Chang 09/06/2004

核心人員

Director 黃太煌

Staff Scientist 吳文晉

Secretary 陳紅錦

核心設施—儀器設備

生醫所NMR Room

500MHz with CryoProbe

Computer Control

600MHz with CryoProbe

600MHz in 化學所

核心設施—儀器設備

not available yet

	NMR	System	Location	Remark		
1	500 MHz	3 channels	IBMS	Upgraded since		
	(Bruker AV)	•TXI probe		Dec. 2002		
		•Cryo probe		Feb. 2004		
2	600MHz	3 channels	IBMS	Available since		
	(Bruker DRX)	•TXI & other probes	Aug. 2002			
3	600MHz	3 channels	CHEM	Available since		
	(Bruker AV)	•BBO & TXI probes	Dec. 2002			
		•TXI probe				
4	600MHz	4 channels	IBMS	Available since		
	(Bruker AV)	•QXI probe	Jan. 2003			
		•Cryo Probe		March 2004		
5	800MHz	4 channels	IBMS	Available since		
	(Bruker AV)	•TXI Probe	July 2004			
		•Cryo Probe		Dec. 2004 6		

Service Items

• 一般服務

使用核心設施: 可由核心人員代測圖譜或自行操作取得圖譜

• 合作模式

共同研究: 由核心人員與使用者共同完成計劃

- 其他服務
- --定期訓練課程 (Users Training Courses)
- --Advance NMR Workshop (邀請專家學者)

核心公用電腦相關軟體

NMR data processing software

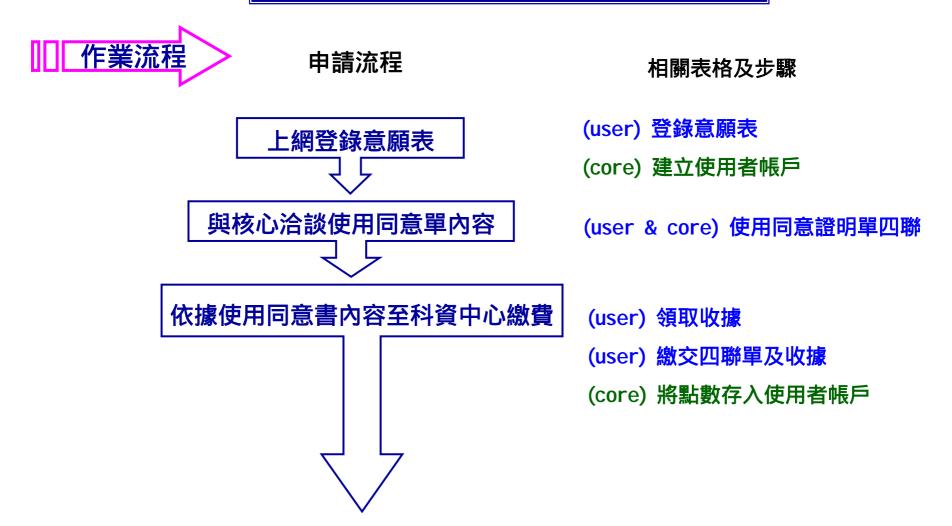
- •XWINNMR (process NMR data on IRIX 6.X & Linux)
- •nmrPipe (process NMR data on IRIX6.X & Linux)

NMR data analysis software

- •AURELIA (analyze NMR data on IRIX 6.X & Linux)
- •nmrDraw (analyze NMR data on IRIX 6.X & Linux)
- •nmrView (analyze NMR data on IRIX 6.X & Linux)
- •Sparky (analyze NMR data on Linux)
- •CARA (analyze NMR data on PC)

Structure Calculation program and software

- •CSI Chemical Shift Index (making consensus plot on IRIX)
- •TALOS (dihedral angles prediction on IRIX 6.X & Linux)
- •XPLOR or CNS (structure calculation on IRIX & Linux)
- •ARIA (auto NOE assign and structure calculation on IRIX6.X & Linux)
- •CYANA (auto NOE assign and structure calculation on IRIX6.5 & Linux)


NMR Core Facility ---User Information--

收費標準

核磁共振儀	規格與單位	點數	
Bruker 500SB	小時	45	
Bruker 500SB Cryo probe	小時	60	
Bruker 600US	小時	60	
Bruker 600UB Cryo probe	小時	90	
Bruker 800US2	小時	200	
Bruker 800US2 Cryo probe	小時	265	
大分子圖譜代測	實驗	1000	
500MHz小分子低溫探頭圖譜代測	(每超過10分鐘加收20點)	30分鐘內完成之	
		每一實驗250點	
600MHz小分子圖譜代測	(每超過10分鐘加收30點)	30分鐘內完成之	
		每一實驗300點	
800MHz小分子圖譜代測	(每超過10分鐘加收45點)	30分鐘內完成之	
		每一實驗450點	

- 每一點以新台幣一元計算,不足一小時以一小時計算
- 小分子圖譜代測30分鐘為最小單位,再依實際操作及資料處理時間計費

申請核心服務流程 (國科會)

使用者帳戶需仍有 " 儲蓄 " 點數方可提供服務, 點數不足者需再申購點數

核心服務流程

網路預約

儀器可預約時間 (前一月25日方公布 最後確認使用時間)

Temporary Reservation Only!! (目前預約狀況)

Final Schedule won't be available until 3/25. (最後時間分配表將於3/25公佈確認)

April 2004 [AVANCE 600 AV (IBMS)]

T	hu Fri	Sal	Su	In Mon	T	ue Wed	
1	2	3	4	5 nitrogen	6	7	
8	9	10	11	12 nitrogen	13	14	
15	16 helium	17	18	19 nitrogen	20	21	
22	23	24	25	26 nitrogen	27	28	
29	30			Teday is : <u>/ 3-Feb-3004 Fri</u> Last Updated : <u>G8-Jan-2004 Fru</u>			

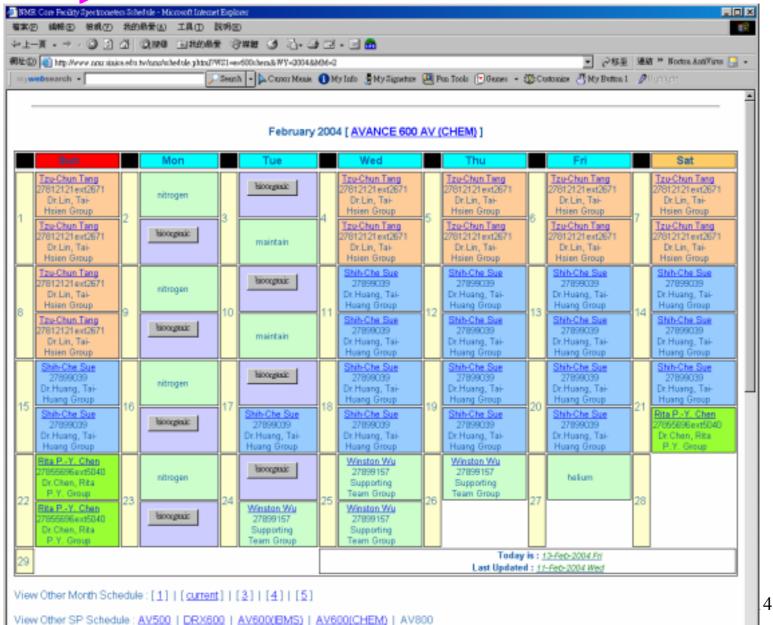
View Other Month Schedule: $[1] \mid [\underline{current}] \mid [3] \mid [4] \mid [5]$

View Other SP Schedule: AV500 | DRX600 | AV600(BMS) | AV600(CHEM) | AV800

schedule manager only | Time Reservation Home

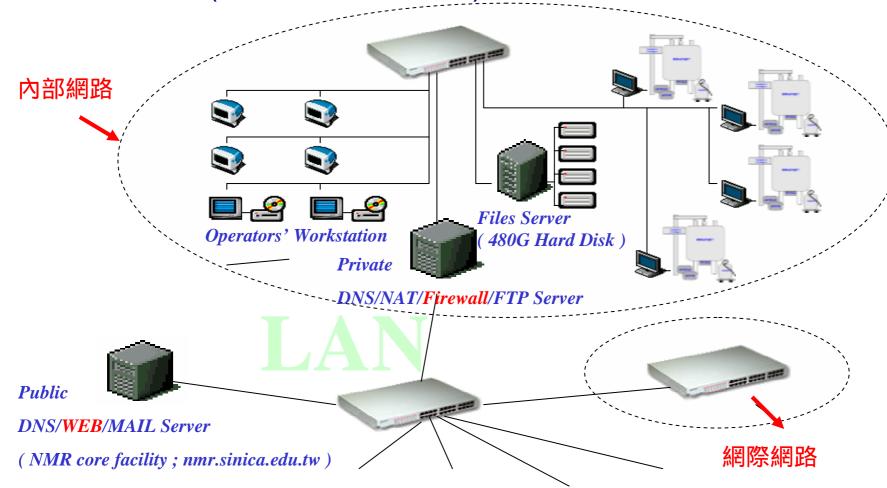
AVANCE 600 AV (IBMS) Reservation Form (暫用版 Temporary Form)

填寫預約表


光譜儀 Spectrometer AVANCE 600 AV (EMS) 使用重位帐户 Group Name 使用者帳號 User Name 使用者姓名 Full Name 計畫主持人PI 連絡電話 Contact Phone no. E-mail Month: 2 DAY: 1 W 相的時段 Preferred Start Time 所戴時間 Experiment Length (eg. 7days,?hours) 操作方式 Operation Mode □操作員 Operator C 自行操作 Self Operate 富酸名稱 Indicate Experiment 其他當求 Others (花頭「研究核心」人員等助進行新會賠償未採用試之會賠,請請早與「研究核心」人員計 論、經「研究核心」人員測試無該後、再預約。)

Send! (核心收到後將 依序安排並回覆)

Send Reser



核心將於前一月25日確認公布儀器分配表並e-mail 通知

資料傳送

- 1. 自取或郵寄:光碟片,磁片,或抽取式硬碟
- 2. 網路直接傳送 (外部網路僅由FTP傳送)

核心資訊網站

http://www.nmr.sinica.edu.tw/

High Field Bicmacromolecular Solution MR Core Facility

製作 | 組織製構 | 規劃與進度 | 問題GA | 最新消息 | 原務 | 資驗室資源

National Genomic Research | Academia Sinica | English

NMR Core

簡介

網羅架構

規劃則過度

MIMIQA

最新消息

膨器

富藝家道源

Notice

- 位整形等電通信(33.3.21停電)
- 等電日度 93.3.21(日) 等電時間: 08:00-13:00前(質)使大樓 12:00-17:00後限(使大樓 Spectrometers...
- [more detail]-
- 化學指導電腦知日3.3.14停電)
- 停電日號 93.3.14(日) 停電時間 12:00-17:00 Spectrometer (AV600) in CHEM will be power d.
- | more detail |-
- 建新田島

基因體學公案已計四月下旬公佈「核心即領中鎮服務效理」,其基本單與為先付費便服務。 核心發展必須配合品項稅定。請使用者核必遵循基別體 學公室服務行政規模使方可提供服務。 故意九十二年七月一日期,使用者預約

- 1 more detail]-

Quick Links

- 光譜儀使用時間表 Time Reservation Table
- 集製訊息(dat)
 (2003.06.06 報正)
- NMR使用及管理除法 (2003.06.86 修正)
- NMR申請提提(doc)
 (2003.06.06 修正)
- 服務機構 (2003.05.06 報道)
- 使用單位修營申請證-下數
- 使用亚锑酸水质更~下数
- Contact Us

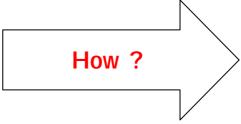
News

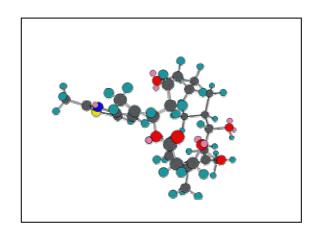
- AVEOD 開始的数据
- Protions Open: NMR Staff
 Scientist
- AVE00 (BMS) 低温原展解放 2004(B0)開設使用
- AV500 (BMS) 低度保護已計 2004/02/01報告押票

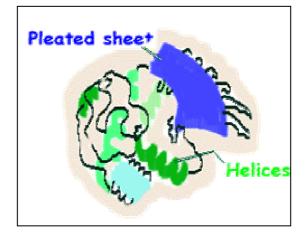
6/11市 11529間接蓋 研究院第二計139款 中研院主義所 相談共興資物室 Service Tot: +886-3-2789047 Fax +886-2-27887641

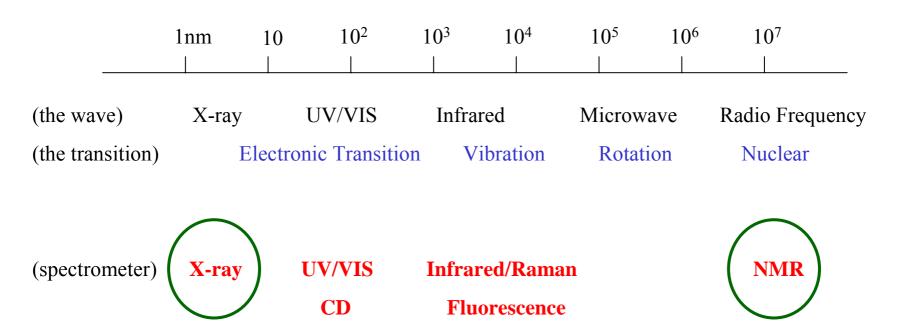
Senke Email: senice@nmc.snica.edu.tw @ 2004 All Rights Reserved

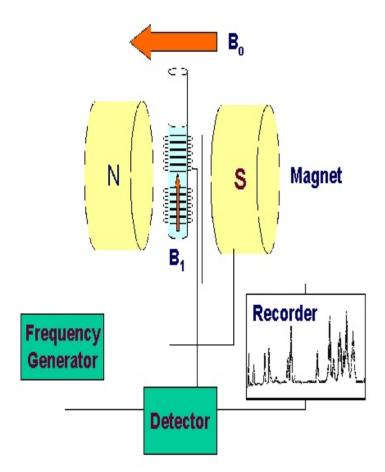
Basic NMR Concepts


Chi-Fon Chang 09/06/2004


The problem the we want to solve


What we "really" see





How about Spectroscopy?

Spectroscopy

Nuclear Magnetic Resonance Spectrometer

B₀: 光譜儀之磁場強度

B₁: 外加小磁場 (來自樣品周圍之線圈)

Before using NMR

What's N, M, and R?

Properties of the Nucleus

Nuclear spin

Nuclear magnetic moments

The Nucleus in a Magnetic Field

Precession and the Larmor frequency

Nuclear Zeeman effect & Boltzmann distribution

When the Nucleus Meet the right Magnet

Nuclear Magnetic Resonance

Properties of the Nucleus

Nuclear spin

- Nuclear spin is the total nuclear angular momentum quantum number. This is characterized by a quantum number I, which may be integral, half-integral or 0.
- Only nuclei with spin number I \neq 0 can absorb/emit electromagnetic radiation. The magnetic quantum number m_I has values of –I , –I +1,+I . (e.g. for I = 3/2, m_I = -3/2, -1/2, 1/2, 3/2)
- 1. A nucleus with an even mass A and even charge $Z \rightarrow$ nuclear spin I is zero

Example: 12 C, 16 O, 32 S \rightarrow No NMR signal

2. A nucleus with an even mass A and odd charge $Z \rightarrow$ integer value I

Example: ${}^{2}H$, ${}^{10}B$, ${}^{14}N \rightarrow NMR$ detectable

3. A nucleus with odd mass A \rightarrow I=n/2, where n is an odd integer

Example: ${}^{1}H$, ${}^{13}C$, ${}^{15}N$, ${}^{31}P \rightarrow NMR$ detectable

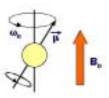
Nuclear magnetic moments

Magnetic moment μ is another important parameter for a nuclei

$$\mu = \gamma I (h/2\pi)$$

I: spin number 1H: I = 1/2, $\gamma = 267.512 * 10^6$ rad $T^{-1}sec^{-1}$

h: Plank constant $6.626*10^{-34}$ joul-sec $13C: I=1/2, \gamma = 67.264*10^6$


 γ : gyromagnetic ratio (property of a nuclei) 15N: I=1/2, γ = 27.107*106

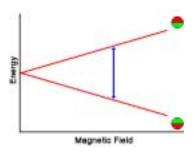
Precession and the Larmor frequency

• The magnetic moment of a spinning nucleus processes with a characteristic angular frequency called the Larmor frequency ω , which is a function of r and B_0

Larmor frequency $\omega = rB_0$

Linear precession frequency $v = \omega/2\pi = rB_0/2\pi$

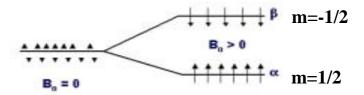
Example: At what field strength do ¹H process at a frequency of 600.13MHz? What would be the process frequency for ¹³C at the same field?


◆ The Nucleus in a Magnetic Field B₀

B_0 (the magnet of machine)

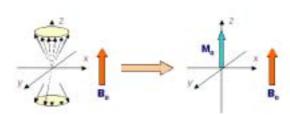
(1) Provide energy for the nuclei to spin

$$E_i = -m_i B_0 (rh/2\pi)$$


Larmor precession $v = \omega/2\pi = rB_0/2\pi$

(2) Induce energy level separation (Zeeman effect & Boltzmann distribution)

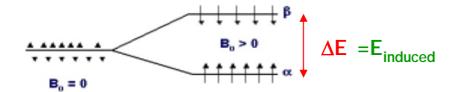
The stronger the magnetic field B_0 , the greater separation


$$P_{m=-1/2} / P_{m=+1/2} = e^{-\Delta E/kT}$$

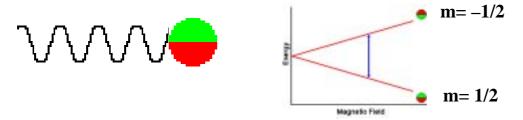
(3) The nuclei in both spin states are randomly oriented around the z axis.

$$M_z = M_0, M_{xy} = 0$$

(where M_0 is the net nuclear magnetization)



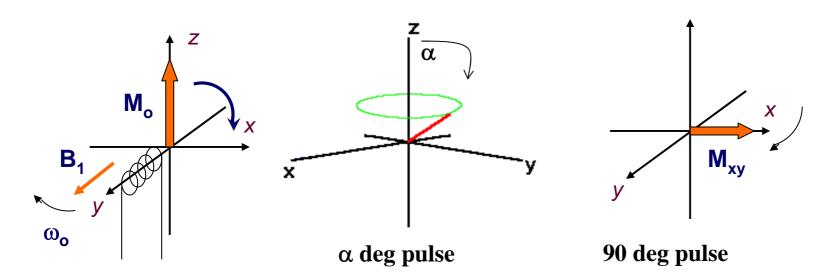
◆ When the Nucleus Meet the "right" Magnet: N. M. Resonance


B_{I} (the irradiation magnet, current induced)

(1) Induce energy for nuclei to absorb, but still spin at ω or $\upsilon_{\mathrm{precession}}$

$$E_{induced} = \Delta E = rhB_0/2\pi = hv_{precession}$$

And now, the spin jump to the higher energy (from $m=1/2 \rightarrow m=-1/2$)

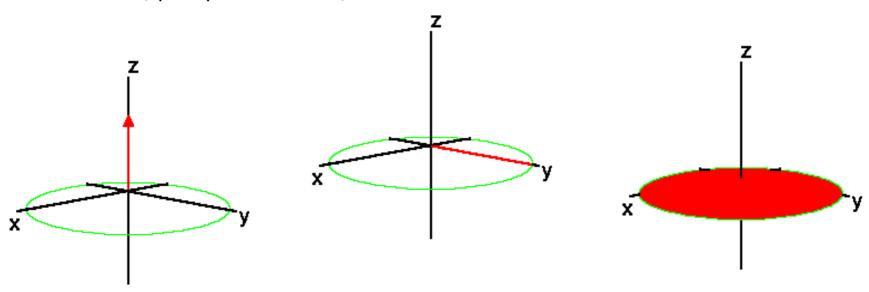

(2) All of the individual nuclear magnetic moments become phase coherent, and the net M process around the z axis at a angel α

$$M_{z}$$
=Mcos α

$$M_{xy}$$
=Msin α .

What happen during irradiation

When irradiation begins, all of the individual nuclear magnetic moments become phase coherent, and this phase coherence forces the net magnetization vector M_0 to process around the z axis. As such, M has a component in the x, y plan, M_{xy} =Msin α . α is the tip angle which is determined by the power and duration of the electromagnetic irradiation.

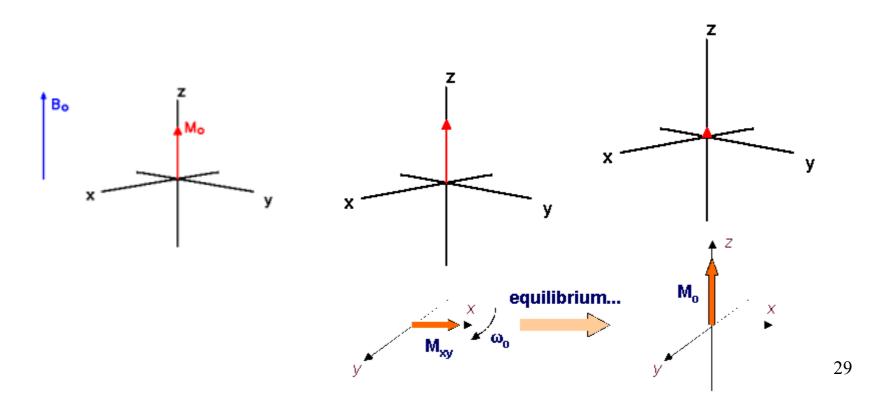

Hint: that's why we need to calibrate 90° pulse!!

What happen after irradiation ceases

•After irradiation ceases, not only do the population of the states revert to a Boltzmann distribution, but also the individual nuclear magnetic moments begin to lose their phase coherence and return to a random arrangement around the z axis.

(NMR 的光譜其實就是在紀錄這個過程!!)

- •This process is called "relaxation process" (弛緩現象)
- •There are two types of relaxation process :
 - T1(spin-lattice relaxation)
 - T2(spin-spin relaxation)


T1 (the spin lattice relaxation)

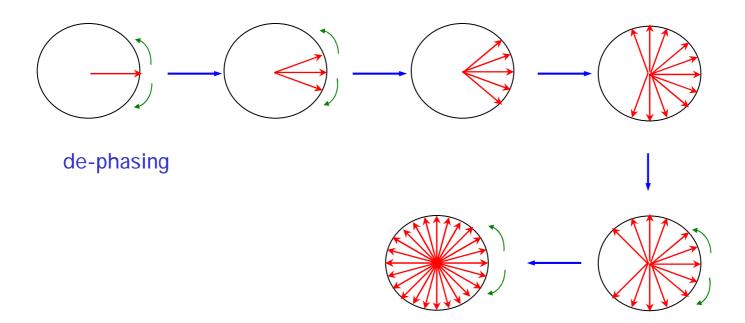
• How long after immersion in a external field does it take for a collection of nuclei to reach Boltzmann distribution is controlled by T1, the spin lattice relaxation time.

(考慮波茲曼分布的效應為主)

- Lost of energy in system to surrounding (lattice) as heat (能量釋放的過程)
- It's a time dependence exponential decay process of Mz components

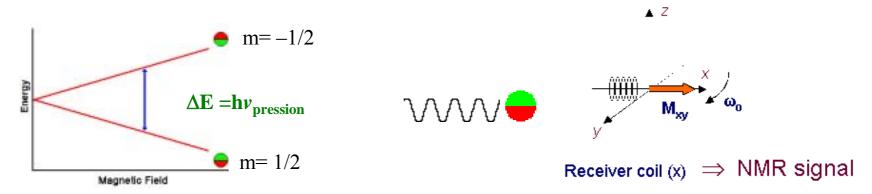
$$dM_z/dt = -(M_z - M_{z,eq})/T1$$

T2 (the spin -spin relaxation)

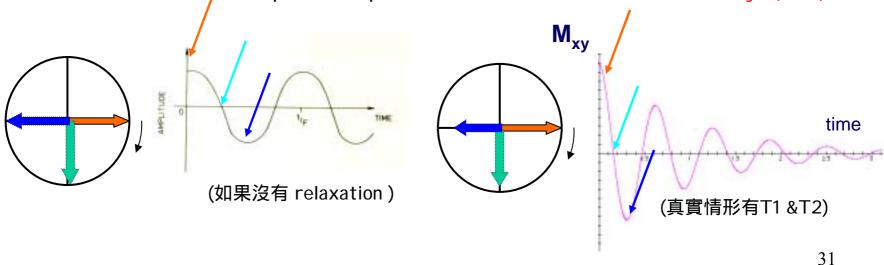

• This process for nuclei begin to lose their phase coherence and return to a random arrangement around the z axis is called spin-spin relaxation.

(考慮自旋方位由同一方向又回到 random 的過程)

 \bullet The decay of M_{xy} is at a rate controlled by the spin-spin relaxation time T2.

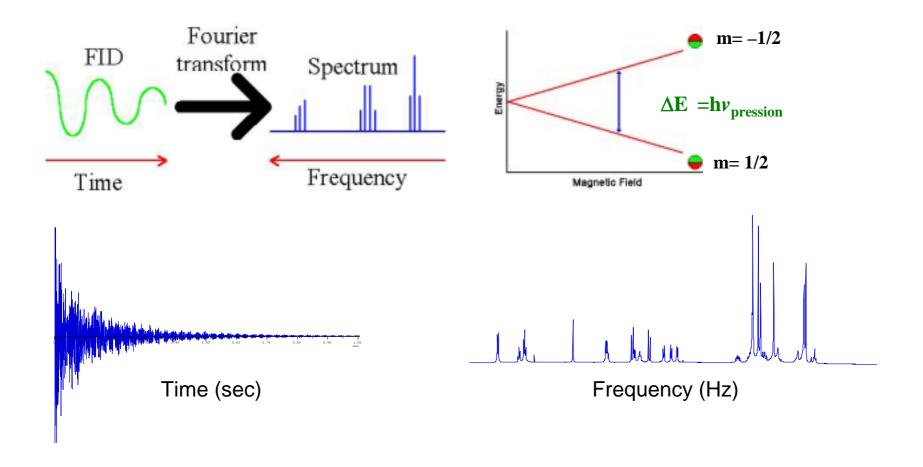

$$dM_x/dt = -M_x/T2$$

$$dM_y/dt = -M_y/T2$$



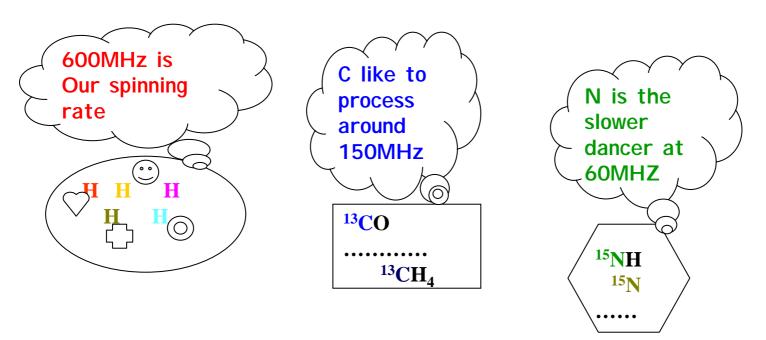
♦ Collecting NMR signals

•The detection of NMR signal is on the xy plane. The oscillation of Mxy generate a current in a coil, which is the NMR signal.



•Due to the "relaxation process", the time dependent spectrum of nuclei can be obtained. This time dependent spectrum is called "free induction decay" (FID)

NMR Data Processing


ullet The FID (free induction decay) is then Fourier transform to frequency domain to obtain $v_{\rm pression}$ (chemical shift) for each different nuclei.

Basic of NMR signal assignment

- It's easy to understand that different nucleus "type" will give different NMR signal. ($\nu = w/2\pi = \gamma BO/2\pi$, γ : gyromagnetic ratio is the property of a nuclei.)
- However, it is very important to know that for same "nucleus type", but "different nucleus" could generate different signal. This is also what make NMR useful and interesting.

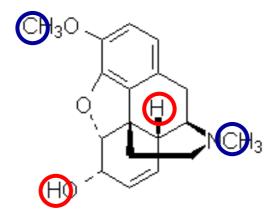
< At 14.7 Tesla >

Basic of NMR signal assignment

ullet Electron surrounding each nucleus in a molecule serves to shield that nucleus from the applied magnetic field. This shielding effect cause different u in the spectrum

 $B_{eff} = B_0 - B_i$ where B_i induced by cloud electron

 $B_i = \sigma B_0$ where σ is the shielding constant

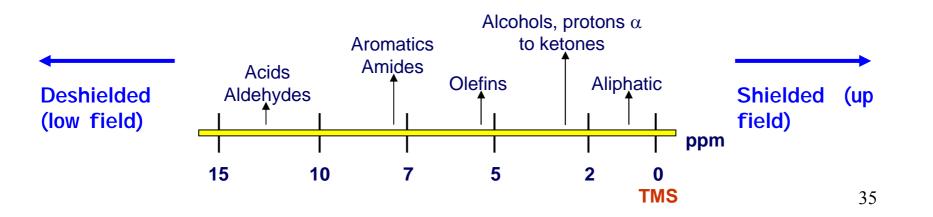

 $B_{eff} = (1-\sigma) B_0$

 $V_{\text{precession}} = (rB_0/2\pi) (1-\sigma)$

 $\sigma = 0$ \rightarrow naked nuclei

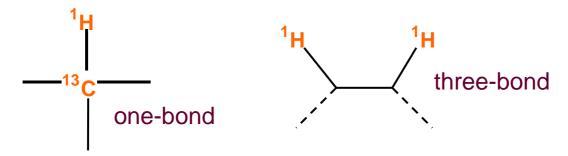
 $\sigma > 0$ \rightarrow nuclei is shielded by electron cloud

 σ <0 \rightarrow electron around this nuclei is withdraw , i.e. deshielded

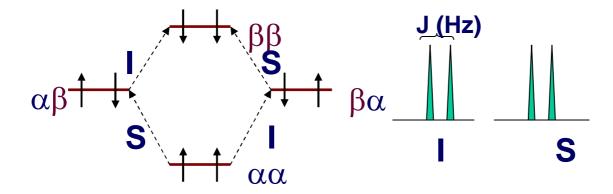


Chemical Shift

• The chemical shift of a nucleus is the difference between the resonance frequency of the nucleus and a standard, relative to the standard. This quantity is reported in ppm and given the symbol delta,


$$\delta = (v - v_{REF}) \times 10^6 / v_{REF}$$

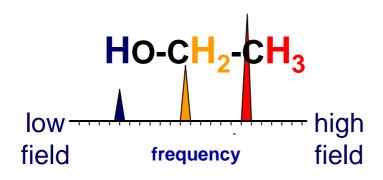
- In 1H NMR spectroscopy, this standard is often tetramethylsilane, Si(CH₃)₄, abbreviated TMS, or 2,2-dimethyl-2-silapentane-5-sulfonate, DSS, in biomolecular NMR.
- The good thing is that since it is a relative scale, the δ for a sample in a 100 MHz magnet (2.35 T) is the same as that obtained in a 600 MHz magnet (14.1 T).



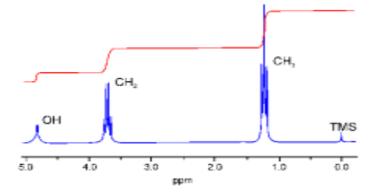
J-coupling

•Nuclei which are close to one another could cause an influence on each other's effective magnetic field. If the distance between non-equivalent nuclei is less than or equal to three bond lengths, this effect is observable. This is called spin-spin coupling or J coupling.

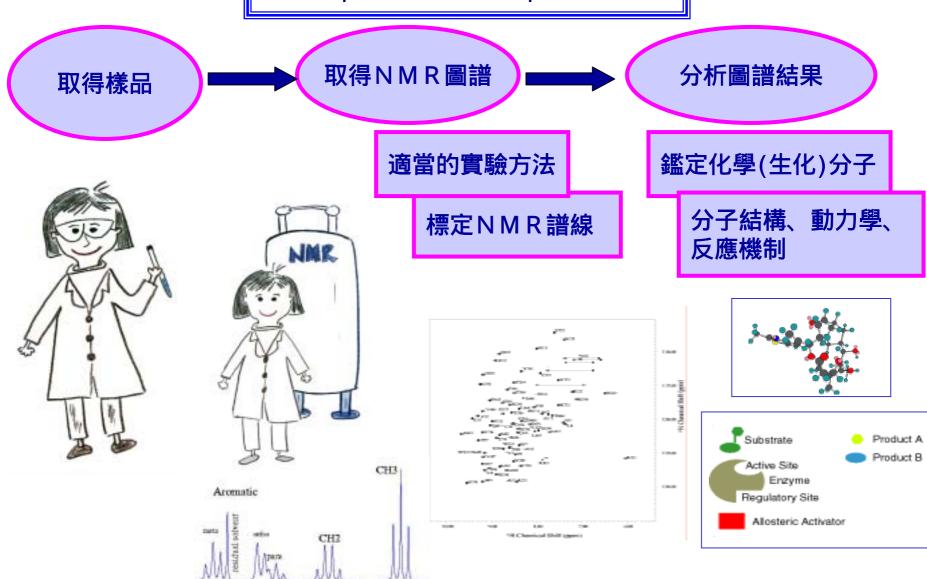
•Each spin now seems to has two energy 'sub-levels' depending on the state of the spin it is coupled to:

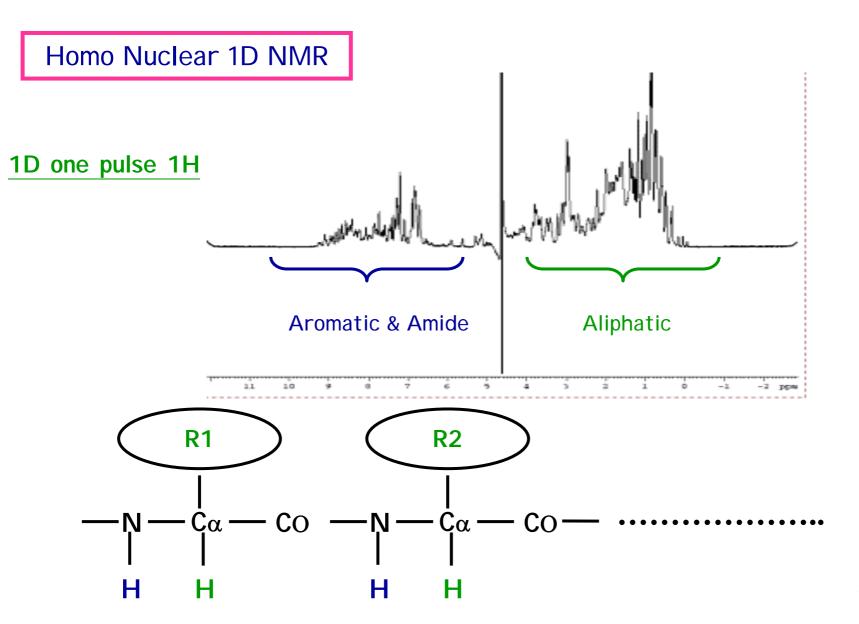


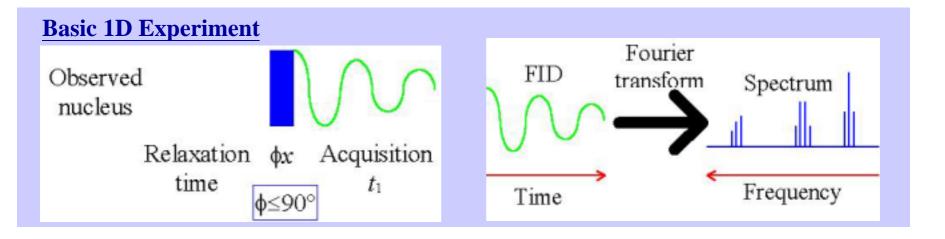
The magnitude of the separation is called *coupling constant* (J) and has units of Hz.

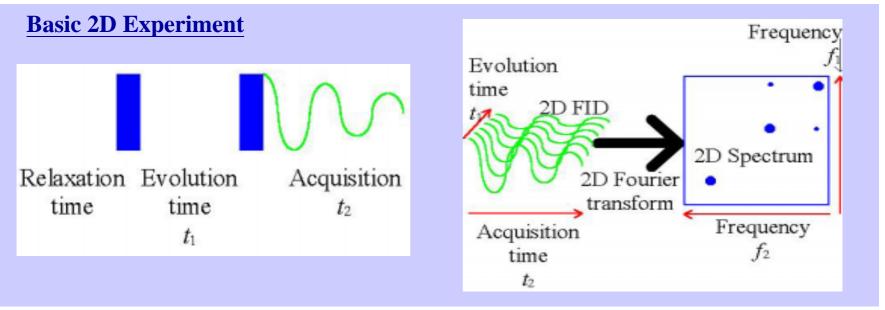

Basic of Assignment

$$V_{\text{precession}} = (rB_0/2\pi) (1-\sigma) = V_{O' precession} (1-\sigma)$$

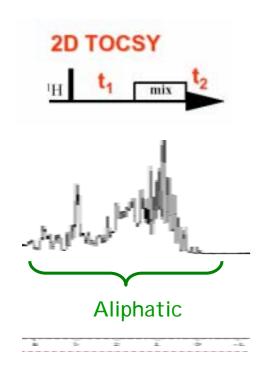

- $\sigma = 0$ \rightarrow naked nuclei
- $\sigma > 0$ \rightarrow nuclei is shielded by electron cloud
- σ <0 \rightarrow electron around this nuclei is withdraw , i.e. deshielded

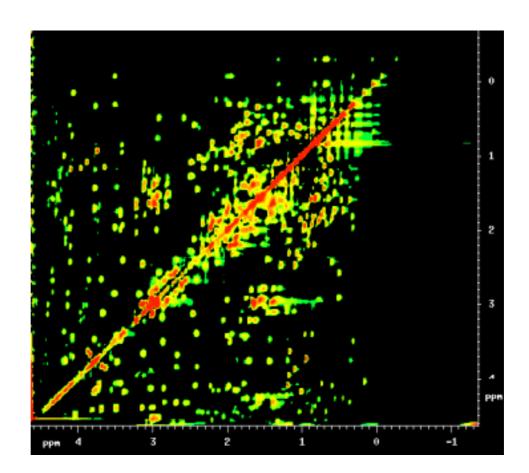

$$ppm*10^{-6} = \Delta \nu / \nu_0 = -\sigma$$

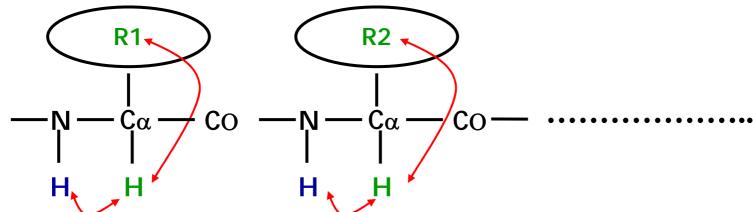

Steps for NMR Experiment



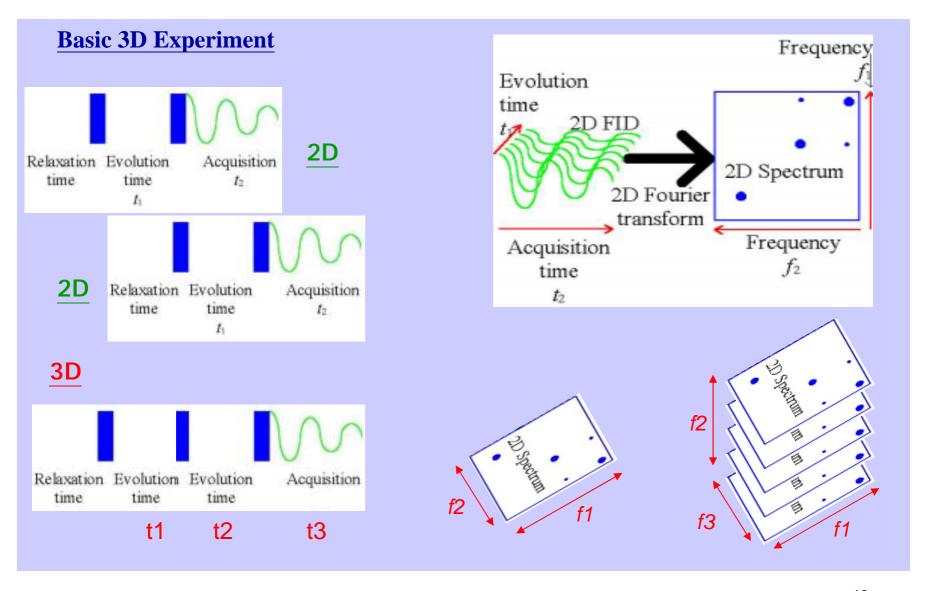
Introduction of NMR Experiments




Homo/Hetro Nuclear 2D NMR



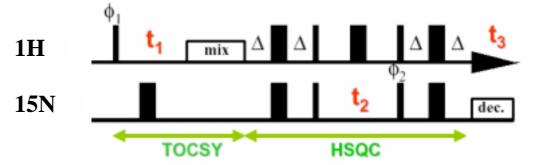
2D Homo Nuclear 1H-1H

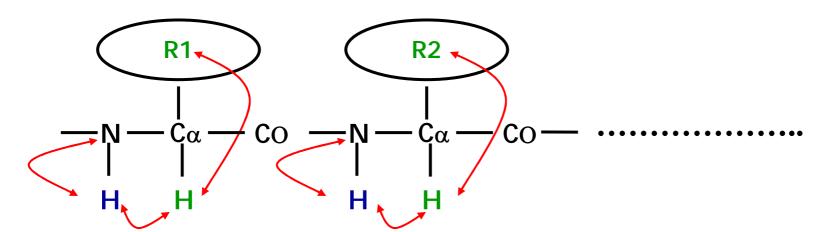


2D Hetero Nuclear 1H-15N **s**V25 **∉**912 2D HSQC **g**G55 110.00 851 **6**328 C58 Y53 13.00 (hemical Shift (ppm) •G71 F22 *D00 15N ■K39 D54 L82D29 125.00 **a**B 52: K83 4K7_K21 130,00 **Aromatic & Amide** 10.00 9.00 8.00 7,00 6.00 ¹H Chemical Shift (ppm) Cα-42

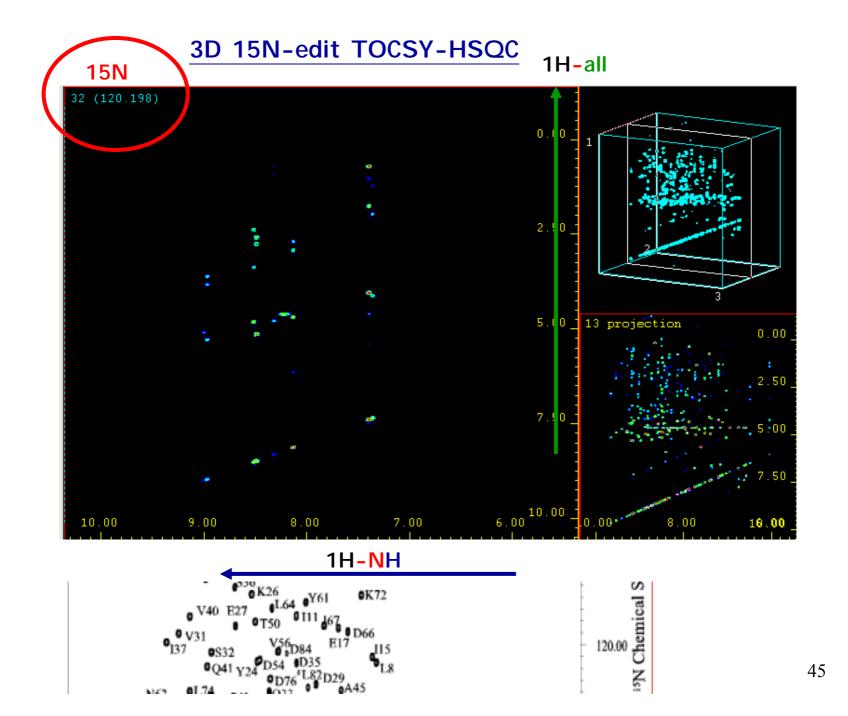
Multi-Dimensional NMR

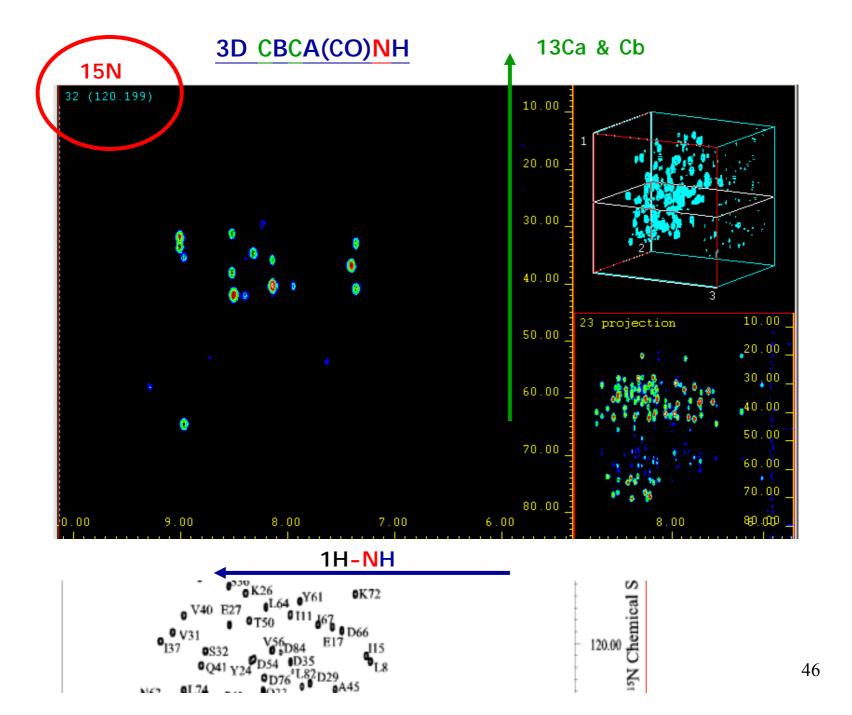
3D Hetero Nuclear

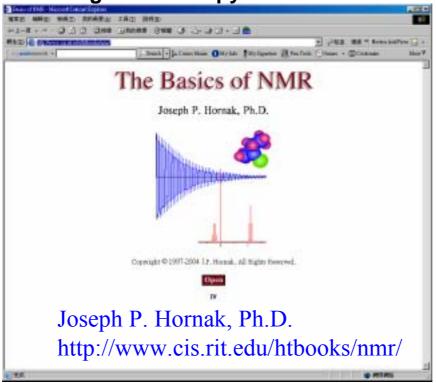

Fig. 1. The 3D pulse sequence.


1H-15N-1H

2D TOCSY 2D HSQC


1H t_1 mix t_2 Δ Δ Δ Δ Δ Δ dec.


3D TOCSY-HSQC


1H

Thank you!! cfchang@ibms.sinica.edu.tw

Some figures are copy from:

