# Data Collection using Xwinmr

**Chi-Fon Chang** 

09/06/2004

Before go into NMR LAB

Which NMR, which probe head to choose?

AV500 in IBMS : 5mm TXI-Z (<sup>1</sup>H/<sup>15</sup>N/<sup>13</sup>C , with Z gradient) only

5mm TXI-Z CryoProbe

AV600 in IBMS: 5mm QXI-Z (<sup>1</sup>H/<sup>15</sup>N/<sup>13</sup>C /<sup>31</sup>P)

5mm TXI-Z CryoProbe

AV600 in CHEM: 5mm BBO & TXI-Z (<sup>1</sup>H/<sup>15</sup>N/<sup>13</sup>C, with Z gradient)

DRX600 in IBMS: 5mm TXI-XYZ (1H/15N/13C, with XYZ gradient) and others

5mm : <sup>1</sup>H , <sup>1</sup>H/<sup>19</sup>F , BBO, TXI(<sup>1</sup>H/<sup>15</sup>N/<sup>13</sup>C) , TXI-Z (<sup>1</sup>H/<sup>3</sup>C/<sup>31</sup>P)

8mm : TXI (<sup>1</sup>H/<sup>13</sup>C/<sup>15</sup>N) 8mm with Z gradient

10mm: <sup>1</sup>H , <sup>1</sup>H /<sup>19</sup>F , BBO

**AV800 in IBMS : 5mm TXI-Z & CryoProbe (not available yet)** 

# In the NMR LAB

Software Connection

## Click on XWIN-NMR 3.5 icon



## Hardware Connection

observe nucleus:1H

decoupling 1:13C

decoupling 2:15N

PROBEHEAD

40 B

States of

調査

lock:2H





1

1H LNA XBB19F

edasp

**2H** 

-

# Loading Sample

1. The best condition for sample? Probes, Temperature, Sample position

1-1. Selecting appropriate probe :

inner coil is observe coil and outer coil is decoupling Example: better 13C sensitivity should use BBO (13C: inner, 1H: outer), but if for better 1H, "inversed probe" (1H: inner, others: outer) is recommended

1-2. Set up temperature : edte (edit temperature)

| 😑 Edte           |             |                |
|------------------|-------------|----------------|
| File Setup Contr | ol Data Dus | 1 <u>H</u> elp |
| Sample temp.     | 538.0 K     |                |
| Target temp.     | 538°0 K     | Change         |
| Heater On        | 3.4 %       | Set max.       |
| Gas Flow         | 400 I/h     | - +            |
| Cooling          |             | Change         |
| BVT3000 —        |             |                |

#### 1-3. Adjust sample position







# Loading Sample

2. Load sample to the magnet

Use "BSMS" board next to computer

3. The best condition for NMR?  $\rightarrow$  wobble : Tune & Match

-Tuning is the process of adjusting freq. until it coincides with the desired frequency -Matching is the process of adjusting the impedance of the resonant circuit





- 4. The best condition for field?  $\rightarrow$  lock and gradshim or manual shim on "BSMS"
  - -Deuterium lock means the long term stability of the magnetic field is achieved
  - -The shims (coils) are small magnetic fields used to adjust the homogeneity of the field



| lock |
|------|
|------|

Solvent

- lock

Acartic Accetion CDC13 CD2C12 CD3CH CD3CH CD45 CD45 D20 H20 H20 D10 CH45 D45 D45 D45 D45 D45 D45 D45 D45 D100000 Ct0H

EdHead

PROPERT: 31

Cancel

#### gradshim : gradient shimming

| Gradient | Shirrening |                    |                   |               |
|----------|------------|--------------------|-------------------|---------------|
| Exit Ed  | it Setu    | up -               |                   |               |
|          | Shi        | imming             | Method            | a service and |
| r 30     | @ 1D       |                    | 1DSel             | C 102H        |
|          | C          | urrent             | Probe             |               |
|          | 5 mi       | n TXI 1.<br>Z8161/ | 3C Z-grad<br>0035 |               |
| 1 22     | -          | Data               | Set               |               |
| DISK C   | Bruł       | US                 | ER st_sue         |               |
| FILENAA  | III grad   | Ishim_T            | >1                |               |
|          | Itera      | tion Co            | ontrol File       | 66            |
| FILENAA  | IE defit   | 1d1h               |                   | 1             |
| -        | It         | eration            | Steps             | 101           |
| 1        | itep #1    | highz              | window:           | 22            |
| 9        | itep #2    | highz              | window:           | 24            |
| S        | itep #3    | highz              | window:           | 26            |
|          | Start C    | radien             | t Shimmir         | ng            |
| 5        | show C     | urrent             | Field Prof        | files         |
|          |            | 100000             |                   | 0.016         |

### **Definition of some AQ Commands**

- edc,new edit current data set or generate a new data set
- edasp edit hardware connection
- edte edit temperature
- wobb tune and match
- eda.ased edit AQ parameters (eda: shows all, ased: shows required only)
- **getprosol** load the existed pulse calibration values for current probe
- rga auto optimize rg value
- zg zero memory, and start to collect FID
- **go** start to collect FID and add signals to the previous memory
- acqu switch window to observe FID
- ft Fourier transfer for 1D
- xfb Fourier transfer for 2D
- **stop/halt** stop the active job (currently AQ job)
- kill kill active job ( can choose several jobs)

# **Definition of some AQ Commands & parameters**

| 01.02,03 | center frequency of the spectrum for nuclear at f1 channel (ex: 1H),        |
|----------|-----------------------------------------------------------------------------|
|          | f2 channel (ex:13C), and f3 channel (ex:15N)                                |
| SW       | spectrum width ( 1 sw : F1 dimension, 2 sw: F2 dimension)                   |
| td       | number of points for FID collection(1 td: F1 dimension, 2 td: F2 dimension) |
| d1       | relaxation time (usually > 5* T1)                                           |
| ns       | number of scan                                                              |
| ds       | dummy scan                                                                  |
| rg       | receiver gain ( usually use the value calculated by rga)                    |
| p0 ~     | pulse length in us                                                          |
| pcpd1 ~  | pulse length for decoupling pulse in us                                     |
| pl1~     | power level in dB                                                           |
| sp1 ~    | power level for shape pulse in dB                                           |
| d2 ~     | delay in sec                                                                |





sw=6ppm

1.5ppm (=o1-sw/2) to 7.5ppm(=o1+sw/2)

# 2D/homo



| F2: H (f1 channel)         |
|----------------------------|
| O1(f1 channel):2.25ppm     |
| 2 sw(F2 dimension): 4.5ppm |
| F1: H (f1 channel)         |
| O1(f1 channel): 2.25ppm    |
| 1 sw(F1 diemnsion): 4.5ppm |



## LAB handout for 09/06/2004 Training Course

Simple Operation Guide for BRUKER AV System

## Easy steps for beginner (1D):

- 1. Type " new" <enter> to start a new experiment
- 2. Type "rpar" <enter> to load an appropriate parameter set
- 3. Type "getprosol" <enter> to load pulse parameter for probehead
- 4. Type "ns" <enter> to input number of scan
- 5. Type "rga" <enter> to find appropriate receiver gain
- 6. Type "zg" <enter> to collect spectrum
- 7. Type "ft" <enter> to do Fourier Transfer
- 8. Click on phase to phase spectrum
- 9. Click on return, then save to save the spectrum
- 10. Print out the spectrum or Save your data on floppy

Set up Experiment for Bio-molecules

- (1) Experiment Name: 1D 1H Experiment Type: one pulse for 1H
- (2) Experiment Name: 1D 1H H2O suppression Experiment Type: H2O suppression using presaturation
- (3) Experiment Name: 2D 1H TOCSY DIPSI Experiment Type: H2O suppression using 3-9-19
- (4) Experiment Name: 2D 15N-1H HSQC Experiment Type: using echo-antiecho
- (5) Experiment Name: 3D HNCO Experiment Type: using echo-antiecho

## Set up Experiment for Small molecules

- (1) Experiment Name: 1D 1H Experiment Type: one pulse for 1H
- (2) Experiment Name: 2D COSY 45 deg Experiment Type: QF mode
- (3) Experiment Name: 1D 13C Experiment Type: with 1H decoupling
- (4) Experiment Name: 1D 13C dept90 Experiment Type: with 90 deg read pulse to give XH only
- (5) Experiment Name: 1D 13C dept135 Experiment Type: XH, XH3 positive, XH2 negative
- (6) Experiment Name: 2D 13C-1H HMQC Experiment Type: hmqcph

How to optimize condition? → For users: Follow Experiment Guide

```
•Experiment Name: 2D 15N-1H HSQC
•Experiment Type: Using echo-antiecho, f1: H, f3:N
•Standard Parameter Set: std_2D_15N_HSQC_ET

    Pulse Program: hsqcf3gpsi

•AQ parameters to check
1H pulses
          pl1 (high power, ex: 0dB), p1 (900 pulse at pl1)
          p28 (trim pulse, ex:1m)
Others
          cnst4 (J H-N, ex: 90Hz)
          d24 (1/4JH-N)
          o1 (for 1H)
          o3 (for 15N)
          1 sw, 1td (for F1 dimension, N)
          2 sw, 2 td (for F2 dimension, H)
          d1
          ns(=1*n)
          ds(>=16)
          rg
```

Users need to adjust parameters in "red" (meaning of the parameter in "green")

```
• How to optimize condition? → For users: Follow Experiment Guide
```

```
•Experiment Name: 3D HNCO
```

•Experiment Type: Using Echo/antiecho, f1: H, f2:C, f3:N, F1(CO), F2(N), F3(H)

•Standard Parameter Set: std\_3D\_HNCO\_wg

•Pulse Program: hncogp3dwg

•AQ parameters to check

1H pulses

```
pl1 (high power, ex: 0db), p1(90deg at pl1), p2(180deg at pl1)
pl19 (low power for dipsi2,pcpd1), p26(90deg at pl19), pcpd1(90deg ,ex: 40-50usec)
sp1 (shape pulse power for Sinc.1000) , p11(pulse length for sp1, ex: 2m)
```

Others

**o1** (for 1H), **o2** (for 13CO), **o3** (for 15N)

1 sw, 1 td (for F1 dimension, ie: 13C)

2 sw, 2 td (for F2 dimension, ie:15N)

3 sw, 3 td (for F3 dimension, ie:1H)

**d1**, **rg**, **ns**(=**8**\***n**), **ds** (**16**)

Steps for optimize 90 deg pulse:

- "rpar" <std\_1D\_1H\_ZGPR> , and set O1 to H2O position

   (if not in H2O, just use std\_1D\_1H\_ZG to determine 90 deg pulse)
- 2. Set pL1= 0db (or 10db or ? db), p1=5u
- 3. "rga"  $\rightarrow$  "zg"  $\rightarrow$  "ft"  $\rightarrow$  <phase>  $\rightarrow$  <save>
- 4. Keep pL1, increase p1= expected 360deg(or, keep p1=360 deg pulse length, decrease pL1=expected power level for p1 value)
- 5. " $zg" \rightarrow$  "fp"  $\rightarrow$  check if the spectrum almost become null, if not, repeat step 4
- 6. Now, you should have a table with 1H pulse information of your sample