#### 2005 NMR User Training Course

National Program for Genomic Medicine High-Field NMR Core Facility, The Genomic Research Center, Academia Sinica 03/30/2005

**Course Handout** 

#### **Concepts on protein triple resonance experiments**

by

Wen-Jin Wu

•R.F pulse field strength

•Decoupling

•Shaped pulse (compared to rectangular pulses)

•Brief description of a 3D HNCA experiment

•Water suppression in triple resonance experiments

•Constant time HSQC (15N-constant time, 13C constant time)

•TROSY type experiments

•Deuterium decoupling

## **R.F pulse field strength**

#### •For a single 90-degree pulse:

Field strength (bandwidth)  $\gamma B_1 (Hz) = 1/(4*PW90)$ , PW90 is length of the 90-degree hard pulse.

For example: a field strength of 6 kHz on a <sup>15</sup>N channel  $\gamma B_1 = 6000 = 1/4^* PW90$ , PW90 = 41.6 usec

#### •For composite pulse decoupling: Effective bandwidth of decoupling = Figure of merit \* 1/(4\*PW90)

Figure of merit  $(\Xi)$ :

The ratio of effective bandwidth to the radiofrequency level, the higher the figure of merit, the larger the effective bandwidth (or weaker power required).

## **Composite pulse decoupling**

•Waltz-16 decoupling bandwidth= 1.8 \* (1/4\*pw90), Waltz-16 is good for decoupling 15N, 2H, 1H.

•GARP decoupling bandwidth= 4.8 \* (1/4\*pw90), for decoupling 13C and 15N

•Dipsi2 decoupling bandwidth= 1.2\* (1/4\*pw90), for decoupling 1H

•CHIRP95 decoupling bandwidth up to 50\*

For a 70 usec 13C\_P90 using GARP decoupling:

the decoupling bandwidth is 4.8\* (1/4\*70\*10<sup>-6</sup>)=17143 Hz

This will cover 17143/125MHz=137 ppm on 500 MHz, 114 ppm on 600 MHz.

GARP decoupling sequence: under /lists/cpd directory

pcpd\*0.339:0 pcpd\*0.613:180 pcpd\*2.864:0 pcpd\*2.981:180

.....

# <sup>13</sup>C Band selective excitation/inversion using rectangular pulse

Calculate <sup>13</sup>C rectangular pulse width according to the following equations:

 $PW_{90} = (15)^{0.5} / 4 * \Delta frequency$  $PW_{180} = (3)^{0.5} / 2 * \Delta frequency$ 

**For example:** On 600 MHz <sup>1</sup>H (150 MHz <sup>13</sup>C) to excite C $\alpha$  (center at 56 ppm) and a null (zero excitation) at CO center at 176 ppm.

 $PW_{90} = (15)^{0.5} / [4 * (176-56)*150*10^{6}] = 53.8 \text{ usec}$  $PW_{180} = (3)^{0.5} / [2 * (176-56)*150*10^{6}] = 48 \text{ usec}$ 

**Caution:** The standard Bruker pulse sequences use shaped 13C pulse for band selective excitation instead of rectangular pulse.

## Why using Shaped <sup>13</sup>C Pulses



Advantage of shaped pulses over rectangular hard pulses: excite region of interest with more homogenous and with minimal perturbation of other regions.

## **Shaped (Frequency Selective) Pulses**

Syntax of a shaped pulse: (p14:sp3 ph1):f2

p14: pulse length sp3: power level of the shaped pulses spnam3: shaped pulse name, spoff3: <sup>13</sup>C-offset for selective decoupling

G4 or Q5.1000 for a 90-degree excitation G3 or Q3.1000 for a 180-degree inversion

# **Adiabatic Inversion Pulses**



For <sup>13</sup>C, <sup>15</sup>N-sample, it is necessary to simultaneously decouple  $C_{\alpha}$  (center at 56 ppm) and CO (center at 176 ppm) during <sup>15</sup>N chemical shift evolution. An adiabatic pulse is required to cover this large <sup>13</sup>C chemical shift range.

# **Adiabatic Inversion Pulses**

•An adiabatic pulse covers a very large bandwidth (chemical shift range)

•Adiabatic pulse is good for inversion purpose



## **Coupling Constants in Polypeptides**



#### Protein triple resonance: <sup>1</sup>H, <sup>15</sup>N, <sup>13</sup>C

Magnetization transfer is via J-coupling interaction, so the larger the J-coupling, the more efficient the transfer. The sensitivity also depends on the T2 relaxation time of the nuclei.

## **Nomenclatures of Triple Resonance Experiments**

- HN, N, HA, CA, CO, HB, CB
- ${}^{1}H^{N}$ ,  ${}^{15}N$ ,  ${}^{1}H^{\alpha}$ ,  ${}^{13}C^{\alpha}$ ,  ${}^{13}CO$ ,  ${}^{1}H^{\beta}$ ,  ${}^{13}C^{\beta}$
- For "out and back" type triple resonance experiments experiment:

For example: **HN(CO)CA** The magnetization transfer pathway:



(HN)N(CO)CA(CO)(N)NH

Name for the return path is dropped to shorten the name.



Figure from Bruker NMR Guide



Carbonyl (C') centers at ~176 ppm (sw ~15 ppm wide) The aliphatic <sup>13</sup>C resonance ~ 10-75 ppm  $C_{\alpha}$  centers at ~ 56 ppm (sw ~30 ppm)  $C_{\alpha}$ - $C_{\beta}$  center at ~ 39 ppm (sw~70-75 ppm)



Figure from Bruker Avance 3D triple resonance

#### **Concepts on triple resonance experiments**



Figure from Bruker NMR Guide



<sup>15</sup>N constant time evolution: simultaneous chemical shift evolution of <sup>15</sup>N and <sup>15</sup>N-<sup>13</sup>C scalar coupling to transfer magnetization from <sup>13</sup>C to <sup>15</sup>N.

Advantage: shorter pulse sequence, reduction in transverse relaxation loss. Figure from Bruker NMR Guide

### **Transformations of magnetization**

**Pulses:** change the orientation of the magnetization

**Chemical shift:** label the magnetization with characteristic frequency during evolution time t

Scalar coupling (J-coupling): transfer magnetization between Jcoupled spins.

**Gradients:** dephase/rephase magnetization

## INEPT Sequence: I<sub>z</sub> -> 2I<sub>z</sub>S<sub>y</sub>



when t=d4=  $(4J_{HS})^{-1}$  $2I_zS_ysin(2\pi J_{HS}t)=2I_zS_y$ maximal transfer of magnetization from <sup>1</sup>H to S,

## Refocused INEPT Sequence: I<sub>z</sub> -> -S<sub>x</sub>



Refocus anti-phase S magnetization  $(I_zS_y)$  to inphase S magnetization  $(S_x)$ .

Figure from Bruker NMR Guide

## Artifact suppression by a Z-gradient pulse



There are several magnetization created at point "a":

#### Desired magnetization: $H_z N_z$ Unwanted magnetization: $H_y N_z$ , $H_y$ , $H_z$

•The unwanted magnetization with transverse component can be destroyed by a short Z-gradient pulse; this also reduces phase cycling for artifact removal.

A. Bax et al. J. Mag. Res., 99, 638-643 (1992)

# Water Suppression



The selective pulse on water (yellow shaped) restores the water magnetization to the +Z axis before applying the de-phasing gradient pulse. This avoids destroying the transverse water magnetization, and reduces saturation transfer to labile amide protons.

L.E. Kay, G.Y. Xu & T. Yamazaki, J. Magn. Reson. A109, 129-133 (1994)

## **Artifact Suppression by Z-Gradient Pulse**



G1 gradient is used to suppress artifact on x/y plane, while the magnetization of interest is along the Z axis.

## Artifact Suppression by Z-Gradient Pulse: another example

#### **HNCO**



magnetization of interest is along the Z axis.

Figure from Bruker NMR Guide



Advantage of (A): shorter pulse sequence (5.5 ms shorter, and one less 180° <sup>15</sup>N pulse).

Edison et al., Method in Enzymol. V239, p3, 1994



Figure from Bruker NMR Guide

# HNCA Heteronuclear decoupling during chemical shift evolution



#### During the chemical shift evolutions:

180-degree inversion pulses (or CPD decoupling pulses) are applied to J-coupled heteronuclei in the middle of chemical shift evolution to remove heteronuclear J-coupling.

## Water suppression in triple resonance experiment



•The selective pulse on water (yellow shaped) restores the water magnetization to the +Z axis before applying the G1 de-phasing gradient pulse. This avoids destroying the transverse water magnetization, and saturation transfer to labile protons (NH's).

L.E. Kay, G.Y. Xu & T. Yamazaki, J. Magn. Reson. A109, 129-133 (1994)



## Water Suppression on CryoProbe

- Radiation damping: The presence of transverse magnetization in a sample induces oscillating current in the coil of the NMR probe. In turn, this current generates a transverse magnetic field which, it turns out, has a tendency to rotate the original magnetization towards the z-axis. This effect, known as radiation damping, is generally only significant for very intense resonances, such as that from solvent  $H_2O$ .
- Radiation damping is significant for high-Q (sensitivity) probe.
- On CryoProbe, many "WATERGATE" type experiments (i.e. "hncogpwg3d") give higher degree of water suppression than the non- WATERGATE type experiments (i.e. "hncogp3d"). On the other hand, the "hncogp3d" is "sensitivity enhanced", therefore the relative sensitivities should be compared.
- Use stronger gradient for water suppression gradient. Use a more squared shaped "sqsm.100" (compared to "sine.100").

## <sup>15</sup>N Constant time evolution

<sup>15</sup>N constant time evolution: simultaneous chemical shift evolution of <sup>15</sup>N and <sup>15</sup>N-<sup>13</sup>C scalar coupling to transfer magnetization from <sup>13</sup>C to <sup>15</sup>N.

Advantage: Shorter pulse sequence, reduction in transverse relaxation loss.



For <sup>15</sup>N ( $T_{2}$ )=100 ms, <sup>1</sup>J(C',N)=15Hz, 2T=33 ms in a HNCO experiment: Signal intensity  $S_{CT}/S_{RT} = 1.2$ 

*M.* Sattler et. al. "Progr.NMR Spectr" v34 (1999), p93-158

# <sup>13</sup>C Chemical shift evolution



 $t1_{max} < 1/3* Jc_{\alpha}c_{\beta} = 10 ms$ Otherwise line-broadening or coupled signals Constant time  $t_1/2$  T  $T-t_1/2$ 

> higher resolution exp[-2T/T<sub>2</sub>( $C^{\alpha}$ )]

 $t1_{max} < 2T = 1/Jc_{\alpha}c_{\beta} \sim 26 ms$ 

 $J_{C\alpha,C\beta} = 35Hz$ , C $\alpha$  (T2)=20ms, t1<sub>max</sub>=2T=1/  $J_{C\alpha,C\beta} = 26ms$  (constant time), t1<sub>max</sub>=1/3  $J_{C\alpha,C\beta} = 10$  ms (real time)

In a HNCA experiment: signal intensity  $S_{RT}/S_{CT} = 2.8$ However, constant time <sup>13</sup>C provides higher resolution (without 35 Hz C-C coupling), Used with small proteins when enhanced resolution is needed or <sup>2</sup>H-proteins.

# HNCACB V.S. CBCANH



#### HNCACB: pulprog=hncacbgp3d

"real time" <sup>13</sup>C chemical shift evolution.

- <sup>13</sup>C magnetization is transverse for ~ 15 ms.
- More sensitive, but <sup>13</sup>C resolution is compromised by the C, C coupling. (for bigger proteins).

CBCANH: pulprog=cbcanhgp3d

"constant time" <sup>13</sup>C chemical shift evolution

- <sup>13</sup>C magnetization is transverse for ~ 30 ms
- Less sensitive, but higher resolution in <sup>13</sup>C due to the absence of C-C coupling.

(for smaller proteins).



## **Correction for Bloch-Siegert Phase Shift**

#### hncagp3d



#### **Bloch-Siegert phase shift:**

Interference of the selective CO\_180 pulse with the evolution of offresonance transverse magnetization (C $\alpha$ ), even if C $\alpha$  is not excited by the selective pulse. Figure from Bruker NMR Guide

## **Time reversed shaped pulse**

•A time-reversed pulse is "time reversed" in order to accomplish a pure 90-degree rotation in the reverse direction made by the previous <sup>13</sup>C 90°pulse

Q5.1000 Q5tr.1000 NC<sup> $\alpha_z$ </sup>-----→NC<sup> $\alpha_y$ </sup>------→NC<sup> $\alpha_z$ </sup> p13:sp2 p13:sp8 •Same power level and duration for Q5.1000 and Q5tr.1000, just "reversed shaped".





# Deuteration

- Reduce relaxation ( $\gamma_{D}$ /  $\gamma_{H}$  = 1/6.5). (a maximal 16 fold reduction).
- Reduce number of signals.
- Suppress spin-spin diffusion





### **Impact of Deuteration on Relaxation and Sensitivity**



Figure from D. Nietlispach in " EMBO NMR course, 2003". Figure from M. Sattler, http://www.embl-heidelberg.de/nmr/sattler/teaching/



hncagp2h3d

<sup>2</sup>H decoupling is necessary to remove 25 Hz <sup>1</sup>J<sub>CD</sub> coupling during <sup>13</sup>C evolution for <sup>2</sup>H-proteins.

#### Sensitivity and Resolution Enhancement by Deuterium Decoupling for <sup>2</sup>H-Protein



First <sup>1</sup>H-<sup>13</sup>C plan of 3D constant time-HNCA of <sup>2</sup>H/<sup>13</sup>C/<sup>15</sup>N-SH3. Data acquired on 800MHz CryoProbe.

# Resolution enhancement by deuteration combined with <sup>13</sup>C constant time evolution



<sup>2</sup>H, <sup>15</sup>N, <sup>13</sup>C-didomain (174 a.a, from Dr. C.F. Chang)

## Transverse Relaxation-Optimized Spectroscopy (TROSY)



- 1. Main relaxation source for <sup>1</sup>H and <sup>15</sup>N: dipole-dipole (DD) coupling and, at high magnetic fields, chemical shift anisotropy (CSA).
- 2. Different relaxation rates (line width) for each of the four components of <sup>15</sup>N-<sup>1</sup>H correlation.
- 3. The narrowest peak (the blue peak) is due to the constructive canceling of transverse relaxation caused by chemical shift anisotropy (CSA) and by dipole-dipole coupling at high magnetic field.
- 4. TROSY selectively detect only the narrowest component (1 out of 4).

Pervushin et al. PNAS USA, v94, p12366 (1997).

### **Interference between DD and CSA Relaxation**



•DD relaxation is field-independent. However, CSA relaxation  $\propto B_0^2$ , therefore at high magnetic fields, CSA relaxation can be comparable to DD relaxation, and the interference effect on relaxation can be observed.

# The Sensitivity and Resolution Gain by TROSY and Deuteration



u-<sup>2</sup>H,<sup>15</sup>N-Gyrase-45 (45 kDa), 750 MHz

Wider and Wuthrich, Current Opinion in Structural Biology, 1999, 9:594-601

**TROSY Effect is Field Dependent and Motion Dependent** 



•**Optimal field strength:** 1 GHz for amide NH; 600 MHz for CH in aromatic moieties (500-800 MHz applicable).