Instruction of Projeciton-Reconstruction NMR

By Wen-Jin Wu, 04-17-2007

This is the first modified version of the second prototype version for 3D Projection Reconstruction by Wolfgang Bermel from Bruker ("pr_readme"). It consists of:

AU programs (-> \$TOPSPINHOME/exp/stan/nmr/au/src)

pr_setup.be pr_proc.be pr_recos.be pr_alpha.be

Pulse programs (-> \$TOPSPINHOME/exp/stan/nmr/lists/pp)

pr_hncogp3d.t1.be

- pr_hncogp3dsc.ww (¹⁵N-semi constant time)
- pr_hncagp3d.t1.be

pr_hncagp3dsc.ww (¹⁵N-semi constant time)

pr_hncocagp3d.ww

pr_hncocagp3dsc.ww (¹⁵N-semi constant time)

- pr_hncacogp3d.ww
- pr_hncacogp3dsc.ww (¹⁵N-semi constant time)
- pr_hncacbgp3d_dp9.ww

pr_hncacbgp3dsc_dp9.ww (¹⁵N-semi constant time)

pr_hncbgp3d_dp9.ww

pr_hncbgp3dsc_dp9.ww (¹⁵N-semi constant time)

pr_cbcaconhgp3dsc.ww (¹⁵N-semi constant time)

The files need to be copied into the appropriate directories.

(1). Create a 3D dataset and set all parameters as if you were to run a normal 3D. Then start **pr_setup.be**. The program will create new expnos for the 2D projections. Change to the first 2D and acquire the data (e.g. multizg).
 (2). Go back to the 3D dataset and start **pr_proc.be**. This program will rearrange the 2Ds and store them under a set of new expnos. Go to these new expnos, transform and phase correct the spectra.

(3). Go back to the 3D dataset and start **pr_recos.be** to reconstruct the 3D cube.

- The program **pr_recos.be** reconstructs the 3D cube, and calculates an F1F2 projection and counts the peaks therein. This number can be used to check how the reconstruction improves as the number of peaks should converge towards the end. (This part may be replaced by a 3d peak picking at some stage).
- The program **pr_alpha.be** calculates an F1F3 projection from the reconstructed cube and counts the peaks therein. It will do this for angles between -800 and +800 and will search for a maximum. The idea is that the best suited projection angle is the one with the largest number of peaks. So

the program will suggest the next projection angle to be recorded.

Additional note:

Under your 3D root directory you will find files:

"**pr_setup**": this contains the number and the location of the 2D sub-spectra that you set up.

"pr_alpha": this contains the prediction results from the macro pr_alpha.be

"**pr_recos**": this contains the projection progress, number of cross peaks and tilted angles that have been used for reconstruction.

Step-by-step tutorial on PR-NMR

Getting ready

(a). Place the pulse sequences in the directory of "pr_pulprog" into your topspin pulse sequence

directory:

C:\Bruker\TOPSPIN\exp\stan\nmr \lists\pp

(b). Place the au programs in the directory of "pr_au" into the following directory:

(C:\Bruker\TOPSPIN\exp\stan\nm r\au\src

pr_setup.be

pr_proc.be

pr_recos.be

pr_alpha.be

(c). Copy the sample data set "workshop_hnco" into your topspin data directory:

- C:\Bruker\TOPSPIN\data\your_ name\nmr
- Or E:\data\your_name\nmr

(1). Setting up the experiments:

Under workshop_hnco 1/1, let's practice setting up the experiments in PR-NMR mode. (Note: for ¹⁵N semi-constant time experiment, set

$10=td2(^{15}N)$).

- "pr_setup.be" →
- Enter pulse sequence name:

Format: pr_pulprog_name

 Key in the number of additional projections with tilted-angle alpha (0<alpha<90) (besides the 0and 90-degree two basic spectra)

a billeauthine	
number of additional projections with tilt-angle alpha (0 $\!<\!$	alpha < 90):
2	
Ōĸ	<u>C</u> ancel
🗽 pr_setup.be 🔀	
the following angles have been selected: alpha	
enter value (1) for alpha (in degree, 0 < alpha < 90) :	
40	
<u>Q</u> K <u>C</u> ancel	
pr_setup.be	
the following angles have been selected: alpha 40.0	
enter value (2) for alpha (in degree, 0 < alpha < 90) :	
50	
<u>Q</u> K <u>C</u> ancel	

• Input the EXPNO for the first

dataset to be stored in:	
🦢 pr_setup.be	×
First dataset to be stored in expno :	
89	
<u>O</u> K <u>C</u> ancel	

• The PR-NMR set up is now finished

🎃 pr_setup.be		×
ſ	pr_setup finished	
	<u>C</u> lose <u>D</u> etails	

Open the "pr_setup" file under the current data directory You will see the following:

4

- 89 0.0
- 90 90.0
- 91 40.0
- 92 50.0
- multizg 89-92
- (after analyzing the data, if you need to acquire more tilted angles, repeat "pr_setup.be", and use "append" instead of "overwrite" to add more angles, and store the first data set in a new expno)

"pr_setup.be"

or_setup.be	;		×
protocol file	e has the follo	wing entries:	
	expno	alpha	
	89	0.0	
	90	90.0	
	91	40.0	
	92	50.0	
overwrite (0) or append (1)			
enter selec	tion :		
1			
		<u> </u>	ncel

or_setup.be				×
protocol file	has the follow	ving entries:		
	expno	alpha		
	89	0.0		
	90	90.0		
	91	40.0		
	92	50.0		
number of a	additional proje	ections with tilt-angle a	alpha (0 <	alpha < 90):
			<u>0</u> K	<u>C</u> ancel
🧅 pr_setup.be			×	
protocol file	has the follow	ving entries:		
1.00	expno	alpha		
	89	0.0		
	90	90.0		
	91	40.0		
	92	50.0		
enter value	(3) for alpha ((in degree, 0 < alpha	< 90) :	
30				
			ancel	
				1
or_setup.be			×	
First datase	t to be stored	in expno :		
93				

• The "pr_setup" file is then updated 5

<u>0</u>K

<u>C</u>ancel

- 89 0.0
- 90 90.0
- 91 40.0
- 92 50.0
- 93 30.0

"zg" the new experiment of 93/1

- Alternatively, you can add the new tilted angle experiment to any new experiment number. For example in 130/1 instead of 93/1 as suggested (you may have other experiments queued up in 93/1 for acquisition).
- The "pr_setup" file is then updated

5 89 0.0 90 90.0 91 40.0 92 50.0 130 30.0

(2). Processing the PR-NMR data

(2a). rearrange the 2D-projection spectra, and process them.

Sample data set: "workshop_hnco/31" is the processed PR-NMR 3D HNCO 32/1 is for you to practice.

(1). The 2D-projeciton spectra are from 200/1 to 209/1 (written to the file "pr_setup").

(2). Under the root directory 32/1: change the file size under EDP. Use 1H=1K, 15N=256, 13C=256, use your usually processing parameter for all other parameters: i.e. ssb=3, linear prediction (LPFc, NCOEF=32 for a

(3). Type in the command "pr_proc.be" to rearrange the acquired 2D data.

🂩 pr_proc.l	be		×
protocol f	ile has the follo	wing entries:	
	expno	alpha	
	200	0.0	
	201	90.0	
	202	10.0	
	203	20.0	
	204	30.0	
	205	40.0	
	206	50.0	
	207	60.0	
	208	70.0	
	209	80.0	
First dataset to be stored in expno :			
12200			
		QK	<u>C</u> ancel

(4). Open the file "pr_proc", the rearranged data location is

rep	orted here.
18	
2200	0.0
2201	90.0
2202	10.0
2203	-10.0
2204	20.0
2205	-20.0
2206	30.0
2207	-30.0
2208	40.0
2209	-40.0
2210	50.0
2211	-50.0
2212	60.0
2213	-60.0
2214	70.0
2215	-70.0
2216	80.0
2217	-80.0

(5). Go to 2200/1, use "xfb" to FT this first 2D spectrum, phase the spectrum, and expand only the region that contains peaks (left-bottom to drag the defined the region (exclude water), and use the right-bottom to save the display region to "parameters STSR/STSI (used by strip ft).

(6). Now use the command "multixfb" to phase all of the spectra

🦢 multixfb		×
Enter number of expnos :		
18		
	<u>o</u> k	<u>C</u> ancel

Now we are ready to reconstruct the 3D spectrum

(2b). Reconstruction of the 3D spectrum

(7). Go back to the 3D root directory 32/1, key in the command
"pr_recos.be", and the following window will pop up.
Choose "(3) use both" for using both of the C-H and N-H orthogonal planes

🖕 pr_recos.be	×		
use orthogonal projections (alpha = 0/90) in first step			
(0)	no		
(1)	use F1 (alpha = 0)		
(2)	use F2 (alpha = 90)		
(3)	use both		
enter option :			
3			
	<u>O</u> K <u>C</u> ancel		

• Mode for reconstruction: lower value is recommended

 Available 2D-tilted experiments are listed:

🍓 pr_recos.be				×
th	e follo	owing da	atasets are available:	
	ID	expno	alpha	
	743	0000	0.00000	
	(1)	2200	0.00000	
	(2)	2201	90.00000	
	(3)	2202	10.00000	
	(4)	2203	-10.00000	
	(0)	2204	20.00000	
	(6)	2200	-20.00000	
$\mathbf{\bullet}$	(7)	2206	30.00000	
	(8)	2207	-30.00000	
	(9)	2208	40.00000	
	(10)	2209	-40.00000	
	(11)	2210	50.00000	
	(12)	2211	-50.00000	
	(13)	2212	60.00000	
	(14)	2213	-60.00000	
	(10)	2214	70.00000	
	(10)	2210	- / U.UUUUU	
	(17)	2210	80,00000	
	(18)	2217	-00.00000	
				_

(8). Input the number of additional projections with tilted-angle alpha (0<alpha<90):

Let's use two additional projections for now.

🖕 pr_recos.be 🗶
number of additional projections with tilt-angle alpha (0 < alpha < 90):
minimum number 0
2
<u>O</u> K <u>C</u> ancel
🔄 pr_recos.be 🔀
enter dataset ID for additional projection (1): 1 <= ID <= 18
7
🙀 pr_recos.be 🔀
enter dataset ID for additional projection (2): 1 <= ID <= 18
8
,

<u>o</u>k

<u>C</u>ancel

It will then perform the 3D

reconstruction

(9). When it is done, under the current directory, open the file "pr_recos" to view the reconstruction result. You can also look at the 3D cube now.

(c). Predict the next tilted plane to acquire

(10). Use the macro "pr_alpha.be" to predict the next tilted angle

🍥 pr_alpha.b	e	×
mode for p	projection	
	(1)	addition
	(2)	pos. max. (skyline)
	(3)	neg. max. (skyline)
	(4)	pos. (+ neg.) max (skyline)
enter mod	e:	
		<u>O</u> K <u>C</u> ancel
🚵 pr. alpha he		X
	pr_alpha finish next value for number of pea max: 64 (8 min.: 60 (3	ned alpha: 80.00o aks: (0.00o) (0.00o)
		<u>C</u> lose <u>D</u> etails

(11). continue to reconstruct the 3D spectrum by adding the 80 and -80 tilted spectra (not to overwrite the 3rrr

file)

🎃 pr_recos.be	2	<			
mode for reconstruction					
(1)	lower value				
(2)	multiplication				
(3)	addition				
enter mode :					
1					
	<u>O</u> K <u>C</u> ancel]			
		_			

🎍 pr_recos.be		×		
the following datasets have already been used:				
	expno alpha mode numpeaks_p numpeaks_n			
	2200 0.00000 1 2201 90.00000 1 2206 30.00000 1 2207 -30.00000 1 64 620			
th	ne following datasets are available:			
	ID expno alpha			
8	2200 0.00000 (2) 2201 90.0000 (3) 2202 10.0000 (4) 2203 -10.0000 (5) 2204 20.0000 (6) 2205 -20.0000 (7) 2206 30.0000 (8) 2207 -30.0000 (10) 2208 40.0000 (11) 2210 -40.0000 (12) 2211 -50.0000 (13) 2212 60.0000 (14) 2213 -60.0000 (15) 2214 70.00000 (16) 2215 -70.00000 (17) 2216 80.00000 (18) 2217 -80.00000			
	Close			

• And add #17 (80) and #18 (-80)

for reconstruction.

br_recos.be					×
number of a	idditional project	ons with t	ilt-angle a	lpha (0 < alp	ha < 90):
minimum nu	mber 0				
maximum nu	umber 14				_
2					
				<u>o</u> k <u>(</u>	ancel
enter datas	et ID for addition	al projecti	ion (3): 1	<u>×</u> <= ID <= 18	
17					
					-
			<u>0</u> K	<u>C</u> ancel	
br_recos.be				X	
enter datas	et ID for addition	al projecti	ion (4): 1	<= ID <= 18	
18					
			OK	Cancel	-
				Quincer	
• Ev	am tha "	or ro	cos" f	ilo for a	etatue
• L^			005 1		siaius
2200	0.0	1			
2201	90.0	1			
2206	30.0	1			
2207	-30.0	1	64	620	
2216	80.0	1			
2217	-80.0	1	61	501	
• Ac	ain use "	pr al	pha.t	be" to p	redict
the	e next tilt	ed ar	Igle	·	
🢩 pr_alpha	albe				×
	pr_alph	ia finisł	ned		
	next va	lue for	alpha:	-40.000	
-					
	number	r of pea	aks:		
	max	63 (8	0.000)		
	min.:	58 (-	60.000)		
		[]""	01		
			<u>c</u> iose		ans
				(*	-

(Pretend that we have continue to acquire the 40-degree angle data)

Now reconstruct the spectrum by adding the data of 40 and -40-degree data

🖕 pr_recos.be	×
3rrr file does exist - overwrite (0) or continue (1)	
enter selection :	
1	
<u>O</u> K <u>C</u> ancel	
	-

🎃 pr_r	recos.be					×
	the follo	owing da	atasets have :	alrea	dy been us	ed:
	ex	pno a	lpha mode	nur	npeaks_p	numpeaks_n
	22	200 0.	00000 1			
	22	201 90	.00000 1			
	22	206 30	0.00000 1			
	22	207 -3	0.00000 1	64	620	
	22	216 80	0.00000 1			
	22	217 -8	0.00000 1	61	501	
	the follo	wing da	atasets are av	zailah	le [.]	
	uie iolii	swing us	atabets are av	ranau	10.	
	ID	exnno	alnha			
			and a constraint of the second s			
W	(1)	2200	0.00000			
	(2)	2201	90.00000			
	(3)	2202	10.00000			
	(4)	2203	-10.00000			
	(5)	2204	20.00000			
	(6)	2205	-20.00000			
	(7)	2206	30.00000			
	(8)	2207	-30.00000			
	(9)	2208	40.00000			
	(10)	2209	-40.00000			
	(11)	2210	50.00000			
	(12)	2211	-50.00000			
	(13)	2212	60.00000			
	(14)	2213	-60.00000			
	(15)	2214	70.00000			
	(10)	2210	-70.00000			
	(17)	2210	50.00000			
						<u>C</u> lose

pr_recos.be	×
enter dataset ID for additional proje	ection (5): 1 <= ID <= 18
9	
	<u>O</u> K <u>C</u> ancel
🥧 pr_recos.be	×
enter dataset ID for additional proj	ection (6): 1 <= ID <= 18
10	
	<u>O</u> K <u>C</u> ancel

Now, let's check the "pr_recos" again.

8					
2200	0.0	1			
2201	90.0	1			
2206	30.0	1			
2207	-30.0	1	64	620	
2216	80.01				
2217	-80.0	1	61	501	
2208	40.01				
2209	-40.0	1	61	541	

🎃 pr_alpha.be		×
	pr_alpha finished	
	next value for alpha: 50.000	
	number of peaks: max: 63 (80.00o)	
	Close Details	_

18				
1200	0.0	1		
1201	90.0	1		
1206	30.0	1		
1207	-30.0	1	64	600
1216	80.01			
1217	-80.0	1	61	517
1208	40.01			
1209	-40.0	1	61	541
1210	50.01			
1211	-50.0	1	60	594
1204	20.01			
1205	-20.0	1	60	586
1214	70.01			
1215	-70.0	1	60	547
1212	60.01			
1213	-60.0	1	60	
1202	10.01			
1203	-10.0	1	60	

• Add 50 and -50 (#11 and #12) for reconstruction

...... Check the the "pr_recos" file

agaın.				
10				
2200	0.0	1		
2201	90.0	1		
2206	30.0	1		
2207	-30.0	1	64	620
2216	80.01			
2217	-80.0	1	61	501
2208	40.01			
2209	-40.0	1	61	541
2210	50.01			
2211	-50.0	1	60	580

• Eventually, with using all 8 angle, it shows that only one-extra tilted angle (30-dgree) is sufficient for reconstructing a 3D HNCO for the 62 a.a. protein since no improvement in the number of cross peaks can be achieved with more tilted angles.

"pr_recos" using all tilted angles