

Fast Data Acquisition NMR Experiments

<u>R. Weisemann</u>, W. Bermel NMR Application Laboratories, Bruker Biospin Rheinstetten, DE

Quick Overview: Fast Methods

FDM (Filter Diagonalisation Method)+ Hadamard+ Red. Dimensionality: GFT* / MWD- / APSY+ **Projection Reconstruction+** Non-Linear Sampling Ultrafast 2D* Covariance NMR⁺ Spectrum Folding Sharc NMR

Rapid Pulsing

Simultaneous Data Acquisition

* patented

- special software (n.a.)

(Mandelshtam & Shaka)

(Kupce & Freeman)

(Szyperski, Wüthrich, Brutscher,

(Gronenborn, Billeter, Markley, ...)

(Kupce & Freeman)

(Wagner, Orekhov, Marion, ...)

(Frydman, Pelupessy)

(Brüschweiler, ...)

(Sidebottom, Berger, ...)

(Sakhaii)

(Ross, Pervushin, Brutscher,...)

(Soerensen, Griesinger, Parella, ...)

+ software available

Schanda et al, J. Am. Chem. Soc. (2005) 127, 8014
Schanda et al, J. Biomol. NMR (2005) 33, 199.
Schanda et al, J. Magn. Reson. (2006) 178, 334.
Schanda et al, Magn. Reson. Chem. (2006) 44, 177.
Schanda et al, J. Am. Chem. Soc. (2006) 128, 9042
Schanda et al, J. Biomol. NMR (2007) 38, 47.
Schanda et al, Proc. Natl. Acad. Sci. USA (2007) 104, 11257.
Lescop et al, J. Magn. Reson. (2007) 187, 163.

Rapid Pulsing: SOFAST-HMQC (sfhmqcf3gpph)

(Band-Selective Optimized-Flip-Angle Short-Transient)

Rapid Pulsing: SOFAST-HMQC

Rapid Pulsing: SOFAST-HMQC (800 MHz /Cryo)

Rapid Pulsing: BEST-HSQC (800 MHz /Cryo)

Relaxation Delay: 200ms Acquisition Time: 79ms GARP Decoupling w/690 Hz 128 complex points, NS=4 experimental time: 360sec Avance III 800MHz US² 5mm TXI (H,C-N) cryogenic probehead no folding

Ref: E.Lescop, P.Schanda, B. Brutscher J.Mag.Res 187 (2007) 163-169

Rapid Pulsing: BEST-NMR: Building Blocks

Rapid Pulsing: BEST-NMR: Example

BEST-HNCA/HNCO

Procedure: scaling/calculation of rf-powers; interactive optimization of parameters by evaluation of on-line FT in continous observation mode.

Other parameters identical to "classical" HNCx "out-and-back" style experiments.

Rapid Pulsing: BEST-NMR Implementation(s)

:b_hncagp3d :auron-version (07/08/30)
best-MMCA
3D sequence with
inverse correlation for triple resonance using multiple
inept transfer steps
$F1(H) \rightarrow F3(N) \rightarrow F2(Ca,t1) \rightarrow F3(N,t2) \rightarrow F1(H,t3)$
orv/off resonance Ca and C+O pulses using shaped pulse
;phase sensitive (r1) ;phase sensitive using Echo/Antiecho gradient selection (r2) ;using constant time in 12 ;(use parameterset)
P. Schanda, H. v. Melckebske & B. Brutscher,
E Lescop, P. Schanda & B. Brutucher,
 S. Grzeniek & A. Bax, J. Magn. Reson. 96, 432 - 440 (1992); S.Chiuccher, M. Sattler & C. Grieninger, Argew. Chem. Int. Ed. 32, 1409-1401 (1992))
(L.E. Kay, G.Y. Xu & T. Yamazaki, J. Magn. Reson. A109, 129-133 (1994))
SCLASS-HighRes
SDIM-3D
STYPE-
SSUBTYPE= SCOMMENT=
prosol relations= <triple></triple>
#include <avance.incl></avance.incl>
#include <grad.incl></grad.incl>
#include <delay.incl></delay.incl>
'p22+p21'2'
-011=Jum-
"d23=14.5m"
'd26=2.4m'
'p29+300u'
"d0 - 3u"
'd10+3u' 'd30+d23-p43'
"in0+inf1/2" "in10+inf2/2"
"in20+in10"

 "spoff2=0" "spoff3=0" "spoff5=bf2*(cnst21/1000000)-o2" "spoff8=0"

"spoff25=bf1*(cnst19/100000)-o1" "spoff26=bf1*(cnst19/100000)-o1" "spoff27=bf1*(cnst19/100000)-o1" "spoff28=bf1*(cnst19/100000)-o1" "spoff29=bf1*(cnst19/100000)-o1" "spoff30=0"

p29:gp3 d16 (p41:sp27 ph2):f1

p16:gp4 d16

(p21 ph3):f3 d23 (center (p14:sp3 ph1):f2 (p22 ph1):f3) d23 (p21 ph2):f3

p16:gp5 d16

(p13:sp2 ph4):f2 d0 (center (p44:sp30 ph1) (p14:sp5 ph1):f2 (p22 ph7):f3) d0 4u (p14:sp3 ph1):f2 DELTA (p14:sp5 ph1):f2 4u (p13:sp8 ph1):f2

Offset Calculations

Extended Shaped Pulse Array

:pQ : f2 channel - power level for pu	he (default)
pl26: f3 channel - power level for CF	D/BB low power decoupling
:sp2: f2 channel - shaped pulse 90 d	legree (Ca on resonance)
:sp3: f2 channel - shaped pulse 180 c	degree (Ca on resonance)
:sp5: f2 channel - shaped pulse 190 c	tegree (C=O off resonance)
spil: 12 channel - shaped pulse 90 d	egree (Ca on resonance)
sp25: f1 channel - shaped pulse 90	degree (Pc9 4 90.1000)
sp26: f1 channel - shaped pulse 180	degree (Reburp. 1000)
sp27: f1 channel - shaped pulse 90	degree (Pc9_4_90.1000)
for time reversed puls	
sp28: f1 channel - shaped pulse 90	degree (Eburp2.1000)
sp29: f1 channel - shaped pulse 90	degree (Eburp2tr.1000)
for time reversed puls	
sp30: f1 channel - shaped pulse 180	degree (Bip720,50,20.1)
p13: f2 channel - 90 degree shaped	pulse
p14: f2 channel - 180 degree shapes	1 pulso
p16: homospoil/gradient pulse	[1 msec]
p19: gradient pulse 2	[500 usec]
p21: f3 channel - 90 degree high po	ower pulse
p22: f3 channel - 180 degree high p	ower pulse
p29: gradient pulse 3	[300 usec]
:p41: f1 channel - 90 degree shaped	pulse for excitation
Pc9_4_90.1000	(3.0ms at 600.13 MHz)
p42: f1 channel - 180 degree shaper	d pulse for refocussing
Reburp.1000	(2.0ms at 600.13 MHz)
p43: f1 channel - 90 degree shaped	pulse for excitation
Eburp2.1000/Eburp3	tr. 1000 (1.92ms at 600.13 MHz)
p44: f1 channel - 180 degree shaper	d pulse for refocussing
: Bip720,50,20.1	(200us at 600.13 MHz)
d0 : incremented delay (F1 in 3D)	[3 usec]
d1 : relaxation delay; 1-5 * T1	
:d10: incremented delay (F2 in 3D)	[3 usec]
d11: delay for disk I/D	[30 msoc]
a 16: delay for homospolugradient re	covery
d23: 1/(4J(NCa)	[14.5 msec]
G200: 17(43(NH)	[2.4 msec]
:d30: decremented delay (F2 in 3D) -	= d23-p43
crist19: H(N) chemical shift (offset, i	n ppm)
chec21: CD chemical unit (office), in	ppmy
crist22: Calpha chemical shift (offset	in ppm)
chused: compensation of chemical sh	es excension annuă bez
Repurp.1000. 0.5	
compensate to the extend the	te other delays allow
cnst41: compensation of chemical sh	ift evolution during p41
PEV_4_VU.1000: 0.529	
cnst42: compensation of chemical sh	ift evolution during p42
Heburp 1000 0.5	
cristika: compensation of chemical sh	int evolution during p43
Eburp2.1000: 0.5	
oup: Lapha chemical shift (cnst22)	

 H1
 12020(2)
 2* 000(2)

 L1
 2502(2)
 2* 000(2)

 L0
 2* 000(2)
 2* 000(2)

 L0
 2* 000(2)
 2* 000(2)

 L0
 10* 0* 000(2)
 0* 000(2)

 L00
 10* 000(2)
 0* 000(2)

:cpd2: decoupling according to sequence defined by cpdprg3: c :pcpd2: dccoupling according to sequence defined by cpdprg3: c :pcpd2: f2 channel - 90 degree pulse for dccoupling sequence :use gradient ratio: : gp 1: gp 2: gp 3: gp 4: gp 5: gp6 : gp7: gp8 : g0 : ll: : 7: -40: -50: 60: -5: 5

 ID:
 11:
 f:
 -00:
 5

 for z-originations:
 10:7:
 10:7:
 10:7:
 10:7:

 10:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:
 10:7:</

Pulse Program Comment

Shaped pulses from Standard Library

Simulation/Calculation: Bip720,50,20.1 ; duration 200usec; 10kHz rf-field; starting at $+M_z$ magnetization

(cave: pulse is "pseudo"-adiabatic)

(Broadband inversion pulses: Shaka et al., J. Magn.Res. 151, 2001, 269ff)

Rapid Pulsing: BEST-NMR Implementations

4D BEST-HNCOCA (800 MHz /Cryo)

Spectrum ProcPa	ars AcquPars Title	PulseProg Peaks	Integrals Sample	Structure Fid			
ю Л S 🖌 🗷	л S U 📰 📩 🔻 🏘 Installed probe: not defined						
Experiment Width	Experiment	F4	F3	F2	F1		
Receiver Nucleus	PULPROG	b_hncocagp4d.t1.t	00	E			
Durations Power	AQ_mod FnMODE		Echo-Antiecho 💌	States-TPPI	States-TPPI		
Program Probe	TD NS	1024 4	32	32	32		
Lists Wobble	DS TD0	100 1					
Lock Automation	▼ Width		[]	[]			
Miscellaneous User	SW (ppm) SWH (Hz)	13.9500 11160.714	38.5431 3125.000	20.7083 4166.667	31.0625 6250.000		
Routing	IN_F [µs] AQ [s]	0.0459700	320.00 0.0051200	240.00 0.0038400	160.00 0.0025600		
	FIDRES [Hz]	10.899135	97.656250	130.208328	195.312500		
	 Receiver 	123000.00					
	Nucleus 1						
	NUC1 O1 [Hz]	1H Edit 3758.63	15N Y	13C 34601.71	13C Y 34601.71		
	O1P [ppm] SFO1 [MHz]	4.698 800.0537586	119.506 81.0780501	172.000 201.2073347	172.000 201.2073347		
	BF1 [MHz]	800.0500000	81.0683620	201.1727330	201.1727330		

4D BEST-HNCOCA (800 MHz /Cryo)

Extension of pulse program syntax to 4D

4D BEST-HNCOCA (800 MHz /Cryo)

"124" cubes taken at 8 discrete ¹⁵N frequencies

Ref: E.Lescop, P.Schanda, B. Brutscher J.Mag.Res 187 (2007) 163-169; extension to 4D by ber/rwe

Thank You !