Tasks in NMR data analysis for Nature Products

Hsiao-Ching Lin (林曉青) Associate Research Fellow, Institute of Biological Chemistry, Academia Sinica April-27th-2022

Textbook references:

Structure Elucidation by NMR in Organic Chemistry (Third revised edition)

Author(s): Eberhard Breitmaier

ISBN: 0470853069 (Electronic) 047085006X (Print) Copyright ? 2002 John Wiley & Sons, Ltd

Spectrometric Identification of Organic Compounds 8th

Robert M. Silverstein, Francis X. Webster, David J. Kiemle, David L. Bryce ISBN: 978-0-470-61637-6 September 2014 464 Pages

1.1 Chemical shift

Figure 1.2. ¹*H* NMR spectrum of ethyl dichloroacetate (CDCl₃, 25 °C, 80 MHz). The proton of the CHCl₂ group is less shielded (more strongly deshielded) in comparison with the protons of the CH₂ and CH₃ residues

Table 2.1. ¹H chemical shift ranges for organic compounds

Signal multiplicity (multiplets)

The ¹*H* NMR spectrum of ethyl dichloroacetate (Fig. 1.2), as an example, displays a triplet for the CH_3 group (*two vicinal H*), a quartet for the OCH_2 group (three vicinal H) and a singlet for the $CHCl_2$ fragment (no vicinal H for coupling).

Figure 1.3. Quartet, doublet of doublets, pseudotriplet and threefold doublet (doublet of doublets of doublets)

FIGURE 3.32 Pascal's triangle. Relative intensities of first-order multiplets; n = number of equivalent coupling nuclei of spin 1/2 (e.g., protons).

2.2.3 *HH* Coupling constants

Table 2.4. Typical *HH* coupling constants (*Hz*) of some units in alicycles, alkenes and alkynes ^{2,3}

2.3 Relative configuration and conformation

2.3.1 *HH* Coupling constants

Vicinal coupling constants ${}^{3}J_{HH}$ indicate very clearly the relative configuration of the coupling protons. Their contribution depends, according to the Karplus-Conroy equation 2,3 ,

$${}^{3}J_{HH} = a\cos^{2}\phi - 0.28$$
 (up to $\phi = 90^{\circ}$: $a \approx 10$; above $\phi = 90^{\circ}$: $a \approx 15$) (2)

on the dihedral angle φ , enclosed by the CH bonds as shown in Fig. 2.18, which sketches the Karplus-Conroy curves for dihedral angles from 0 to 180°. Experimental values correspond to those given by the curve shown; deviations are up to 3 Hz; electronegative substituents on the coupling path, for example, reduce the magnitude of ${}^{3}J_{HH}$.

	Dihedral Angle	Calculated J(Hz)	Observed J(Hz)
Axial-axial	180°	9	8-14 (usually 8-10)
Axial- equatorial	60°	1.8	1-7 (usually 2-3)
Equatorial- equatorial	60°	1.8	1-7 (usually 2-3)

TABLE 3.6. Calculated and observed coupling constants, J, in cyclohexanes based on bond angle.

Table 2.5. Typical HH coupling constants (Hz) of aromatic and heteroaromatic compounds 2,3

H 8.76 N **H** 7.16 **H**7.90 а 8.03 **H** а 8 7 . 6 5 E Ø **6 H** 7.90 8 ¢8 b - 🗂 65 80 ₿ 8 8.03 **H** 8 н 7.35 **H** 88 N = 7.55 **H** œ 0 7.60 **H** 12 7.60 7.55 7.35 7.16 8.03 7.90 ppm 8.76

HH COSY (geminal, vicinal, w-relationships of protons)

scans, 256 experiments]. (a) *HH* COSY; (b) *HH* TOCSY; (c) selective one-dimensional *HH* TOCSY, soft pulse irradiation at $\delta_H = 5.20$ (signal not shown), compared with the ¹H NMR spectrum on top; deviations of chemical

Table 2.2. ¹³C chemical shift ranges for organic compounds

Tips on Structure Elucidation by NMR Spectroscopy

1. Molecular Formula

- +m/z = 285 (Mw = 284)
- Numbers of protons in ¹H spectrum
- Numbers of carbons and multiplicity in ¹³C spectrum
- Propose number of heteroatoms

2. Table of 1D (including coupling patterns) and 2D signals

- 3. Characterize "moieties" based on coupling patterns and 2D spectra
- 4. Link moieties together based on HMBC, COSY and TOCSY..etc.
- 5. Identify **Relative Stereochemistry** based on **NOESY**

δ _H (mult)	δ_{c} (mult)	НМВС	NOESY	
11.03 (s)		136.5, 124.4, 122.6 (w), 110.8	6.48, 3.75	
7.22 (d, 8.0)	110.2 d	124.4, 117.7	7.27. 7.00	
7.20 (br.s)	122.6 d	136.5, 124.4, 110.8	7.48, 6.72	
6.99 (t <i>,</i> 7.9)	121.1 d	136.5, 133.3	7.00, 5.18, 1.65	
6.68 (d, 7.9)	117.7 d	124.4, 110.2, 64.5		
5.33 (br.d, 7.9)	124.4 d	133.3 (w), 25.7, 18.5	2.48, 2.38	
5.22 (br.d, 8.0)	64.5 d	136.5, 133.3, 124.1, 117.7, 61.8		
4.05 (dd, 12.7, 3.6)	61.8 d	172.0, 110.8, 64.5, 36.0, 25.4		
3.39 (m)	25.4 t	124.4, 122.6, 110.8, 61.8		
3.25 (m)		172.0, 124.1, 122.6, 110.8,		
		61.8		
2.48 (s)	36.0 q	64.5, 61.8	3.91, 2.48, 1.82	
1.83 (s)	18.5 q	136.5, 124.1, 25.7	6.72, 6.03, 1.65	
1.71 (s)	25.7 q	136.5, 124.1, 18.5	6.88, 5.39, 5.18. 1.85, 1.65	
	172.0 s			
	136.5 s			
	136.5 s			
	133.3 s			
	124.1 s			
	110.8 s			

<mark>64.5</mark>

- HMBC: C to H (³J or ²J)
- COSY: H to H (²J or ³J)

is also very informative that correlates those protons coupling to each other.

For Publication

No.	$\delta_{\rm H}$ (mult, J in Hz)	$\delta_{\rm C}$ (type)	НМВС	COSY	NOESY
1	11.04 (s)		110.8, 122.6, 124.4, 136.5		
2	7.20 (s)	122.6 (CH)	25.4, 110.8, 124.4, 136.5		
3		110.8 (C)			
4a	3.42 (m)		61.8, 110.8, 122.6		
4b	3.27 (m)	25.4 (CH ₂)	61.8, 110.8, 122.6, 172.0	4.05	
5	4.05 (dd, 12.0, 3.6)	61.8 (CH)	25.4, 36.0, 64.5, 110.8, 172.0	3.27	5.32
5a		172.0 (C)			
6a	2.48 (s)	36.0 (CH ₃)	64.5		5.22
7		64.5 (CH)	61.8, 124.1, 136.5	5.32	1.83, 2.48,
	5.22 (0, 7.8)				6.68
8		133.3 (C)			
8a		124.4 (C)			
9	6.68 (d, 7.8)	117.7 (CH)	64.5, 110.2, 124.4	6.99	5.22
10	6.99 (t, 7.8)	121.1 (CH)	133.3, 136.5	6.68, 6.99	
11	7.22 (d, 7.8)	110.2 (CH)	117.7, 124.4	6.99	
11a		136.5 (C)			
12	5.32 (d, 7.8)	124.1 (CH)	18.5, 25.7, 64.5, 133.3	5.22	1.70, 4.05
13		136.5 (C)			
14	1.83 (s)	18.5 (CH ₃)	25.7, 124.1, 136.5		5.22
15	1.70 (s)	25.7 (CH ₃)	18.5, 124.1, 136.5		5.32

Dibenzocycloheptenes

Lin, H. C., Lee, S. S.*. Dibenzocycloheptenes from the Leaves of *Cinnamomum subavenium*. J. Nat. Prod. 2012, 75, 1735–1743

Cpd 27: cinnasubavene A

HR-ESI-MS: $[M-H]^-= 335.1246 m/z$ Calcd for $C_{19}H_{20}O_4-H$

ssl-scl-20110217, 1, 1H-spectrum, p.2057200 Fr.4, in CD30D, AV600, 2011/02/17

Cpd 27: cinnasubavene A

HR-ESI-MS: [M-H]⁻= 335.1246 *m/z*

Cpd 27: cinnasubavene A

Cinnasubavene B (**28a**: a*R*, **28b**: *aS*)

HR-ESI-MS: $[M-H]^-$ = 429.1555 *m/z* Calcd for C₂₃H₂₅O₈-H

ssl-scl-p3042451 1, 1H-spectrum, p.3042451 Fr.1, in CD30D, AV600-CRP, 2010/1/29

Verification of the presence of atropisomers with 1D-NOESY

1D-NOESY: selective excitation at the glc H-1 of 2a (δ 4.12) caused spontaneous excitation of the glc H-1 of 2b (δ 4.38) \rightarrow This evidence confirms that the two atropisomers exist in equilibrium, rendering them inseparable.

Figure 3. 1D NOESY of 2a by selective excitation at δ 4.12 (glc H-1) (methanol- d_4 , 600 MHz).

HO OH OH 34

ratio R_2 R_3 R_3 R_1 R_1 R_2 28a H Н 28a H Glc 1.1:1 Н Glc 29a H OCH₃ Glc OCH₃ Glc **29b** H 1:0.9 **30**a H OH Glc 30b H OH Glc 1.1:1 31a Glc Н Н Н **31b** Glc Н 1:0.7 **32a** Glc $OCH_3 CH_3$ OCH₃ CH₃ 2:1 32b Glc 33a Rha OH Н 1.1:1 33b Rha OH Н

To confirm 1. diastereomeric property 2. absolute configuration

Hydrogenation of Mixture of 28a and 28b, and 31a and 31b

Axial chirality \rightarrow cotton effect

X-ray crystallography and CD

M helicity \rightarrow CE (+)

HO OH OH 34

ratio R_2 R_3 R_3 R_1 R_1 R_2 28a H Н 28a H Glc 1.1:1 Н Glc 29a H OCH₃ Glc OCH₃ Glc **29b** H 1:0.9 **30**a H OH Glc 30b H OH Glc 1.1:1 31a Glc Н Н Н **31b** Glc Н 1:0.7 **32a** Glc $OCH_3 CH_3$ OCH₃ CH₃ 2:1 32b Glc 33a Rha OH Н 1.1:1 33b Rha OH Н

Tips on Structure Elucidation by NMR Spectroscopy

1. Molecular Formula

- +m/z = 285 (Mw = 284)
- Numbers of protons in ¹H spectrum
- Numbers of carbons and multiplicity in ¹³C spectrum
- Propose number of heteroatoms
- 2. Table of 1D (including coupling patterns) and 2D signals
- 3. Characterize "moieties" based on coupling patterns and 2D spectra
- 4. Link moieties together based on HMBC, COSY and TOCSY..etc.
- 5. Identify Relative Stereochemistry based on NOESY (Absolute stereochemistry can be further verified through other methods such as circular dichroism, chemical synthesis, Mosher's method, X-ray crystallography...etc.)

