Setting up NMR Experiment in HFNMRC

2022.04.27

Chi-Fon Chang, Ph.D.

Senior Research Specialist , Genomics Research Center Facility Manager, High-Field NMR Center Academia Sinica, Taiwan

Question : Which NMR ?

Which NMR is the best for my sample?

QA1: Which Probe could provide information I need?

Probe Type	Regular	Cryoprobe
Sensitivity* (organic solvent)	1	~4
(aqueous solution)	1	~2.5
Probe Coil	Observe	Inverse
	(ex:TBO,BBO,Dual)	(ex: TXI, TCI)
	X-nuclei observed Experiment	1H-detected Experiments
	(1D 13C, 1D 31P)	(1D 1H,
		2D COSY/TOCSY
		2D HSQC/HMBC)

NMRs in HFNMRC

NMRs	Location	Probes	Note *current installed probe
		TXI_regular	- 1U/120/15N
		TCI_Cryo*	
		TXI_regular	1H/13C/15N
AV800	IBMS B2	TXI_Cryo*	with SampleJet -3 position for regular -96 positions for spinner-free -5 positons for rack (96 well-plate)
AVIII600	IBMS B2	TCI_Cryo*	1H/13C/15N
NEO600	IBMS B2	TCI_Cryo*	1H/13C/15N; with SampleCase (24 samples)
		TXI/QXI_regular	
AV600_CHEM	CHEM B1	TBO_regular*	1H/19F/BB (ex: 13C,15N, 31P)
		BBO_regular	
٨\/500		TXI_Cryo	1H/13C/31P/19F:
AV500	IBM2 B2	QNP_Cryo*	with SampleXpress (60samples)

QA2: Do I need high fie	ld for	better re	esolution ?		
NMR field	<= 500 <i>1</i>	MHz	>= 600 MHz		
chemical shift(ppm)		the sam	e		
coupling constant(J, Hz)		the sam	e		
Sensitivity*	lowe	r	higher		
Resolution**	lowe	r	better		
$H_{\alpha} = \exp(-\Delta E/kT) = \exp[(\gamma hB_{o})/(2\pi kT)]$	$S/N =$ $N =$ $\gamma_{exc} =$ $\gamma_{det} =$ $ns =$ $B_0 =$ $T_2 =$ $T =$	$S/N = \frac{N\gamma_{exc}}{N}$ signal to noise rationumber of spins in gyromagnetic ratio gyromagnetic rationumber of scans external magnetic transverse relaxation	$\frac{T_2(\gamma_{det}B_0)^{3/2}\sqrt{ns}}{T}$ o the system (sample concentration of the excited nucleus of the detected nucleus of the detected nucleus field on time (determines the line widh		

* Higher Sensitivity is needed for low concentration sample

****** Better resolution is needed for overlap peaks

1D 1H Spectrum in ppm

Higher the field, better the sensitivity and resolution

NMR Probes S/N ratio in HFNMRC

Regular Probe*	1H (EB)	Others
500MHz_TXI	450	
600MHz_TXI	1,218	
600MHz_BBO	465	465 (13C)
600MHz_QXI	1,193	85(31P)
600MHz_TBO		
800MHz_TXI	2,077	

CRYO Probe*	1H (EB)	Others
500MHz_TXI	4,196	
500MHz_QNP	2,000	1,000 (13C) 988 (31P)
600MHz_TCI_005	5,700	710(13C)
600MHz_TCI_121	6,530	950(13C)
800MHz_TXI	6,200	
850MHz_TCI	8,500	1,600(13C)

NMR & Probe Topspin 1H (EB) Others 1,000 (13C) AV500 IBMS TP2.x 2,000 988 (31P) (Cryo QNP) 1,000 (19F) AVIII600_IBMS TP2.x 5,700 710(13C) (Cryo TCI_005) TP3.x NEO600 IBMS TP4.x 6,530 950(13C) (Cryo TCI_121) 377(13C) AV600 CHEM TP2.x 406 241(31P) (regular TBO) 342(19F) AV800 IBMS TP2.x 6,200 N/A (Cryo TXI) TP2.x AVIII850 IBMS 8,500 1,600(13C) (Cryo TCI) TP3.x

*Signal to Noise (S/N)value @ installed date

Question : How to collect NMR data?

Simple Operation Guide for HFNMRC Users

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

Lock> The 2H signal is collected by "lock channel" that operates in parallel with the principle channels. "Lock" maintain the center of 2H resonance at a constant frequency.

- Deuterated solvents are used to generate the signal to be detected and monitored by the lock system. The frequency and strength of this signal will depend on the solvent used.
- The lock system uses a receiver to monitor this deuterium frequency and makes adjustments to the magnetic field strength accordingly.
- The deuterium frequency is measured several thousand times per second. Hence, as long as the system is locked, the user can be confident that the field is maintained at a constant strength during acquisition.

*Important: you must lock the correct solvent, otherwise, the spectrum chemical shift might be incorrect.

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

- Wobble> Wobble is to carry out "tuning" and "matching" simultaneously. Type "wobb" for old probe, "atma" or "atmm" for probe with ATM
- **Tuning** involves adjusting the probe circuitry so that the **frequency** at which it is most sensitive is the relevant transmission frequency (SFO1, SFO2 etc.)
- Matching involves ensuring that the maximum amount of the power arriving at the probe base is transmitted up to the coil which lies towards the top of the probe.

*Important: for QNP or BBO probe, you should wobble for the X-nuclei you like to observe

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART I: Preparation (Software & Hardware)

- Shimming> Shimming is a process in which minor adjustments are made to the magnetic field until the field homogeneity (uniformity) is optimized. Improving the homogeneity will result in better spectral resolution.
 - Shimming is to adjust the shim coil circuits (ex: Z, Z2, Z3...X,Y....) which are designed to create small magnetic fields that will cancel out inhomogeneity in the Bo magnetic field.

• Type "topshim" for automation, manually shim might be needed

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART II: Experiment Set up & Data Collection

- <getprosol> getprosol is to read in pulse parameters saved in the "prosol"
- prosol is a file (table) containing Probe/Solvent parameters (calibrated using standard sample, ex: Urea/Methanol) for the probehead installed on a specific NMR system.

	edprosol	_ = >							
<u>Eile Edit View H</u> elp									
Saved Observe and Saved Decouple Prosol Parameter Set for:									
Probe: Z44896_0121 CP TCI 600S3 H-C/N-D-05 Z Select		Solvent: generic 💌							
	Observe Decouple								
	1H Vucleus 1H V								
	Observe Decouple								
Observe Comment: Default 1H obs 600	Decouple Comment: Default 1H dec 600								
90 deg. Pulses HR Square Pulses HR Shape Pulses Others									
	Observe Decouple								
Nucleus	Pulse Width[µs] Att. Lvl.[dB] Set Pulse Width[µs] Att. Lvl.[dB] Set Nucleus								
1H	8.00 -7.32 🚫 8.00 -7.32 🚫 1H								
2H	68.00 -14.81 🚫 68.00 -14.81 🚫 2H								
13C	12.00 -19.55 🚫 12.00 -19.55 🚫 13C								
15N	35.00 -19.23 🚫 35.00 -19.23 🚫 15N								
Nucleus	Pulse Width[µs] Att. Lvl.[dB] Set Pulse Width[µs] Att. Lvl.[dB] Set Nucleus								
*Important: the pulse para	neters in "HFNMRC standard r	parameter set"							

"Important: the pulse parameters in "HFNMRC standard parameter set" won't be the same for current probe. Thus, you must "getprosol" to read in the correct parameters for current probe you are using.

by Dr. Chi-Fon Chang for small molecules (2022.03.10 updated)

PART II: Experiment Set up & Data Collection

- Write down the power level (dB) and corresponding pulse-length(us)
- Instead of "getprosol" only, you should type

"getprosol 1H <90° pulselength> < corresponding power level> '

*With optimized 90 degree pulse, the spectrum quality could be better. Especially for multi-dimensional experiments or experiments with specific pulse angles (ex: dept90, dept135, cosy45)!

Signal Intensity=1/2 → But back to Z faster, can collect more scan

Hands-on Let's try Some Experiments

- 1D 1H zggppr
- 1D 13C deptq
- 1D Selected TOCSY/NOESY
- 2D 1H-13C HSQC using NUS
- Diffusion Experiments (DOSY)

1 D 1H/13C Experiments

GRC Parameter Set	Experiment Details
1GRC_1D_1H-ZG-sol_zggppr	1H NMR with solvent suppression
1GRC_1D_13C-DEPTQ_deptqgpsp.2	Similar to DEPT135 but quaternary carbons are present

Expt	C	СН	CH2	СНЗ
DEPT45	NA	Positive	Positive	Positive
DEPT90	NA	Positive	NA	NA
DEPT135	NA	Positive	Negative	Positive
DEPTQ	Negative	Positive	Negative	Positive

1D Selected Excitation Experiments

Use button NMR

queue_init: finished

1D Selected TOCSY

2 D 1H/13C HSQC

GRC Parameter Set	Experiment Details
1GRC_2D_HSQC_hsqcetgpsisp2.2	Routinely used
1GRC_2D_HSQC-editing_hsqcedetgpsisp2.2	Similar to DEPT135

Spectrum	ProcPars	AcquPars	Title	PulseProg	Peaks	Integrals	Sample	Structure	Plot	Fid		
юЛS		l,2, ▼ C	8									
Experiment	1				F2		F	1	Fre	equency axis	^	
Width			ment									
Receiver			nem									
Nucleus	F	PULPROG		hsqcedet	tgpsisp2	2.2		E	Cur	rrent pulse program		
Durations	A	AQ_mod		DQD		\sim				Acquisition mode		
Power	F	INTYPE		traditiona	al(plane	s)	~		nD acquisition mode for 3D etc.			
Program	F	EnMODE					Echo-Antiecho 🗸		Aco	usition mode for 2D_3D etc		
Probe		INNODE								answer mode for 2B, 6B etc.		
Lists	1	ſD		2048		25	6		Size	e of fid		
NUS	(DS		16					Nun	mber of dummy scans		
Wobble	1	1S		2					Nun	mber of scans		
Lock	1	rd0		1					Loo	op count for 'td0'		
Automation		[Dav		0					Ave	erage loop counter for nD experiments		

Example on different version HSQC

1GRC_2D_HSQC_hsqcetgpsisp2.2 1GRC_2D_HSQC-editing_hsqcedetgpsisp2.2 F1 [ppm] 2D HSQC-Echo hsqcetgpsisp2.2 (most routine used) F1 [ppm] 2D HSQC-editing hsqcedetgpsisp2.2 XH, XH3 positive, XH2 negative 00 8 00 8 \$ 6 8 8 d21= 1/(2J(YH)): YH, YH3(+), YH2 (-) F2 [ppm] 2 1 1 F2 [ppm] 3 2

2 D 1H/13C editing HSQC with NUS

(Bruker NUS only available on Topspin3.x or above)

GRC Parameter Set									Experi	ment D	Details
1GRC_2D_	GRC_2D_HSQC-editing_hsqcedetgpsisp2.2							Si	milar to	DEPT	135
Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure Pla								Fid			
🗠 Л S 📙 🗄	1,2, V C	P									
Experiment Width	Experiment	ent	F2	(1)	F FnTYI	¹ PE sele	Free ct "	quency ax 7 non-u	_{xis} Iniform s	amplin	g
Nucleus Durations Power Program Probe Lists NUS Wobble Lock	PULPROG AQ_mod FnTYPE FnMODE TD DS NS TD0	hsqced DQD non-un tradition full(poir non-un projecti z	etgpsisp2 iform_sar nai(planes nts) iform_san on-spectr	2.2 mpling \$) npling roscopy		E	Curi Acq nD a Acq Size Num Num	rrent pulse quisition m acquisition quisition m e of fid mber of du mber of sc op count fo	e program node n mode for 3D node for 2D, 31 ummy scans ans or 'td0') etc. D etc.	
Miscellaneous	TDav	0					Ave	erage loop	o counter for n	D experimer	nts

Spectrum ProcPa	s AcquPars Title F	PulseProg Peaks Integ	rals Sample	e Structure Plot	Fid				
🗠 Л S 🕇 🖾	1 <u>2</u> V C 🚜								
Experiment Width	NUS (Non Unifo	orm Sampling) parameter	rs (2	2) Under	AcquPars-NU	S option ,	Тур̂е	Nus % you l	ike
Receiver		NUS Help		Sho	w NUS help				
Nucleus	NusAMOUNT [%]	25		Amo	unt of sparse sampling				
Durations	NusPOINTS	32		Num	ber of hypercomplex points i	in indirect dimension			
Power	NusJSP [Hz]		0	J-co	upling				
Program	NusT2 [sec]		1	T2 r	elaxation				
Lists	NusSEED	54321		Ran	dom generator seed				
NUS	NUSLIST	automatic		Nam	e of loopcounter list for NUS	(Non Uniform Sampl	ing)		
Wobble		Calculate		Calc	ulate list of sampling points				
Lock		Show		Disp	lay NUS point spread				
Automation Miscellaneous	Nobble								

(3) zg to collect data

Spectrum ProcPars , cquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid							
S 12. M ♥ ♣ (4) Under ProcPars-NUS							
Reference NUS (Non Uniform Sampling) parameters			Mdd_	mod select "cs"(n	o license needed)		
Phase	Mdd_mod	cs ~		MDD mode			
Baseline	MddCEXP	mdd	FALSE ~	RMDD/MDD flag			
Fourier	MddCT_SP	cs	FALSE ~	Constant time			
NUS	MddF180		FALSE ~	Delayed sampling flag			
Peak	MddNCOMP	0		Number of components			
Miscellaneous	MddPHASE	·	0	Phase			
User	MddSRSIZE [ppm]	0		Sub region size			

(5) xht2 to phase(6) xfb for 2D processing

1D Diffusion Experiment

GRC Parameter Set	Experiment Details
1GRC_1D_DOSY-sol_ledbpgp2s1d	
1GRC_1D_DOSY-sol_ledbpgppr2s1d	With presat solvent suppression
1GRC_1D_DOSY-sol_stebpgp1s191d	With 3-9-19 solvent suppression

1D DOSY set up Tips:

- (1) GPZ6=5 --> rga,zg,efp,apk, abs n --> wrp 2
 (2) GPZ6=95 --> adjust d20 and/or p30 to scale ~5%-10% *
 (3) Write down d20 and p30 for 2D
- If > 10%, increase d20, after that, p30 can be increased, but keep p30<2ms (cryoprobes) <3ms (regular probe)
- If < 5% , decrease either d20 or p30

2D Diffusion Experiment

GRC Parameter Set	Experiment Details
1GRC_2D_DOSY-sol_ledbpgp2s	
1GRC_2D_DOSY-sol_ledbpgppr2s	With presat solvent suppression
1GRC_2D_DOSY-sol_stebpgp1s19	With 3-9-19 solvent suppression

2D DOSY set up Tips:

- (1) Key in optimized d20 and p30 from 1D DOSY
- (2) type" dosy" to set up experiment
 - a. gradient amplitude from 5% -95%
 - b. set number of points between 7-25 (default is 16)
 - c. ramp type : q
- (3) Start experiment

2D DOSY Processing Tips

(1) SI[F1]= TD[F1]x2 ; TD[F1]= number of gradients, or larger (ex:128)

```
(3) Transform all FID in 2D
>xf2
>abs2
```

(4) Start DOSY processing

>setdiffparm >eddosy >dosy2d setup >dosy2d ;moves d20 and p30 into processing modules ; you can change PC to larger number (ex: 10 or 40) ; run-through data and estimated D range ; performs DOSY transform as setup in eddosy

1D DOSY

