Basic NMR Concepts

Chi-Fon Chang NMR Core Facility 2002/12/23 NMR Spectroscopy

Where is it?

	1nm	10	10^{2}	103	10^{4}	10 ⁵	106	107	
(the wave)	X-ray		UV/VIS	Infra	ared	Microw	vave	Radio Frequency	
(the transition)	E	lectror	nic Transition	l V	Vibration	Rotat	tion	Nuclear	
(spectrometer)	X-ray	I	UV/VIS		Infrared/Raman			NMR	
	Fluorescence								

Before using NMR

What's N, M, and R?

Properties of the Nucleus

Nuclear spin

Nuclear magnetic moments

The Nucleus in a Magnetic Field

Precession and the Larmor frequency

Nuclear Zeeman effect & Boltzmann distribution

When the Nucleus Meet the right Magnet

Nuclear Magnetic Resonance

Nuclear spin

• Nuclear spin is the total nuclear angular momentum quantum number. This is characterized by a quantum number I, which may be integral, half-integral or 0.

• Only nuclei with spin number I \neq 0 can absorb/emit electromagnetic radiation. The magnetic quantum number m_I has values of -I, -I+1,+I. (e.g. for I=3/2, m_I=-3/2, -1/2, 1/2, 3/2)

1. A nucleus with an even mass A and even charge Z \rightarrow nuclear spin I is zero Example: ¹²C, ¹⁶O, ³²S \rightarrow No NMR signal

2. A nucleus with an even mass A and odd charge $Z \rightarrow$ integer value I Example: ²H, ¹⁰B, ¹⁴N \rightarrow NMR detectable

3. A nucleus with odd mass A \rightarrow I=n/2, where n is an odd integer

Example: ¹H, ¹³C, ¹⁵N, ³¹P \rightarrow NMR detectable

Nuclear magnetic moments

Magnetic moment μ is another important parameter for a nuclei

 $\mu = \gamma \mathbf{I} \ (\mathbf{h}/2\pi)$

I: spin number

h: Plank constant 6.626*10⁻³⁴ joul-sec

γ: gyromagnetic ratio (property of a nuclei)

1H: I=1/2,
$$\gamma = 267.512 * 10^{6}$$
 rad T⁻¹S⁻¹
13C: I=1/2, $\gamma = 67.264*10^{6}$
15N: I=1/2, $\gamma = 27.107*10^{6}$

◆ The Nucleus in a Magnetic Field

Precession and the Larmor frequency

• The magnetic moment of a spinning nucleus processes with a characteristic angular frequency called the Larmor frequency ω , which is a function of *r* and B₀

Remember $\mu = \gamma I (h/2\pi)$? Angular momentum dJ/dt= $\mu \times B_0$

Larmor frequency $\omega = rB_0$

Linear precession frequency $v=\omega/2\pi = rB_0/2\pi$

Example: At what field strength do ¹H process at a frequency of 600.13MHz? What would be the process frequency for ¹³C at the same field?

Nuclear Zeeman effect

• Zeeman effect: when an atom is placed in an external magnetic field, the energy levels of the atom are split into several states.

• The energy of a give spin sate (E_i) is directly proportional to the value of m_I and the magnetic field strength B_0

Spin State Energy $E_I = -\mu \cdot B_0 = -m_I B_0 r(h/2\pi)$

• Notice that, the difference in energy will always be an integer multiple of $B_0 r(h/2\pi)$. For a nucleus with I=1/2, the energy difference between two states is

$$\Delta E = E_{-1/2} - E_{+1/2} = B_0 r(h/2\pi)$$

The Zeeman splitting is proportional to the strength of the magnetic field

Boltzmann distribution

• Quantum mechanics tells us that, for net absorption of radiation to occur, there must be more particles in the lower-energy state than in the higher one. If no net absorption is possible, a condition called saturation.

• When it's saturated, Boltzmann distribution comes to rescue:

$$P_{m=-1/2} / P_{m=+1/2} = e^{-\Delta E/kT}$$

where P is the fraction of the particle population in each state,

T is the absolute temperature,

k is Boltzmann constant 1.381*10⁻²⁸ JK⁻¹

Example: At 298K, what fraction of ¹H nuclei in 2.35 T field are in the upper and lower states?

(m=-1/2 : 0.4999959 ; m=1/2 : 0.5000041)

• The difference in populations of the two states is only on the order of few parts per million. However, this difference is sufficient to generate NMR signal.

• Anything that increases the population difference will give rise to a more intense NMR signal.

When the Nucleus Meet the Magnet

Nuclear Magnetic Resonance

•For a particle to absorb a photon of electromagnetic radiation, the particle must first be in some sort of uniform periodic motion

• If the particle "uniformly periodic moves" (i.e. precession) at $v_{\text{precession}}$, and absorb erengy. The energy is $\text{E}=hv_{\text{precession}}$

•For I=1/2 nuclei in B_0 field, the energy gap between two spin states:

• The radiation frequency must exactly match the precession frequency

$$E_{photon} = hv_{precession} = hv_{photon} = \Delta E = rhB_0/2\pi$$

→This is the so called "Nuclear Magnetic RESONANCE"!!!!!!!!!

Nuclear Magnetic Resonance Spectrometer How to generate signals?

B₀: 光譜儀之磁場強度

B₁:外加小磁場 (來自樣品周圍之線圈)

• Magnet B_0 and irradiation energy B_1

 $\underline{B_0}$ (the magnet of machine)

(1) Provide energy for the nuclei to spin
 E_i=-m_iB₀ (rh/2π)
 Larmor frequency ω=rB₀

(2) Induce energy level separation (Boltzmann distribution)

The stronger the magnetic field B_0 , the greater separation

between different nuclei in the spectra

 $\Delta v = v_1 - v_2 = (r_1 - r_2) B_0 / 2\pi$

(3) The nuclei in both spin states are randomly oriented around the z axis.

 \underline{B}_{l} (the irradiation magnet, current induced)

(1) Induce energy for nuclei to absorb, but still spin at ω or $v_{\text{precession}}$

 $E_{photon} = hv_{photon} = \Delta E = rhB_0/2\pi = hv_{precession}$

And now, the spin jump to the higher energy (from $m=1/2 \rightarrow m=-1/2$)

(2) All of the individual nuclear magnetic moments become phase coherent, and the net M process around the z axis at α angel

What happen before irradiation

• Before irradiation, the nuclei in both spin states are processing with characteristic frequency, but they are completely **out of phase**, i.e., randomly oriented around the z axis. The net nuclear magnetization M is aligned statically along the z axis ($M=M_z$, $M_{xy}=0$)

What happen during irradiation

When irradiation begins, all of the individual nuclear magnetic moments become **phase coherent**, and this phase coherence forces the net magnetization vector M to process around the z axis. As such, M has a component in the x, y plan, M_{xy} =Msin α . α is the tip angle which is determined by the power and duration of the electromagnetic irradiation.

What happen after irradiation ceases

•After irradiation ceases, not only do the population of the states revert to a **Boltzmann distribution**, but also the individual nuclear magnetic moments begin to lose their phase coherence and return to a random arrangement around the z axis.

(NMR 的光譜其實就是在紀錄這個過程!!)

•This process is called "relaxation process" (弛緩現象)

•There are two types of relaxation process : T1(spin-lattice relaxation) & T2(spin-spin relaxation)

<u>T1 (the spin lattice relaxation)</u>

• How long after immersion in a external field does it take for a collection of nuclei to reach Boltzmann distribution is controlled by T1, the spin lattice relaxation time.

(考慮波茲曼分布的效應為主)

•Lost of energy in system to surrounding (lattice) as heat

(能量釋放的過程)

•It's a time dependence exponential decay process of Mz components

<u>T2 (the spin – spin relaxation)</u>

•This process for nuclei begin to lose their phase coherence and return to a random arrangement around the z axis is called spin-spin relaxation.

(考慮自旋方位由同一方向又回到 random 的過程)

•The decay of M_{xy} is at a rate controlled by the spin-spin relaxation time T2. $dM_x/dt=-M_x/T2$ $dM_y/dt=-M_y/T2$

Collecting NMR signals

•The detection of NMR signal is on the xy plane. The oscillation of Mxy generate a current in a coil , which is the NMR signal.

•Due to the "relaxation process", the time dependent spectrum of nuclei can be obtained. This time dependent spectrum is called "free induction decay" (FID)

•In addition, most molecules examined by NMR have several sets of nuclei, each with a different precession frequency.

•The FID (free induction decay) is then Fourier transform to frequency domain to obtain each v_{pression} (chemical shift) for different nuclei.

frequency (Hz)

Fourier transformation (FT)

NMR signals

• We have immersed our collection of nuclei in a magnetic field, each is processing with a characteristic frequency, To observe resonance, all we have to do is irradiate them with electromagnetic radiation of the appropriate frequency.

(想要觀察核磁共振的現象只須提供適當的能量)

•It's easy to understand that different nucleus "type" will give different NMR signal. (記得 $v = \omega/2\pi = \gamma B_0/2\pi$? 所以不同的 γ 就有不同的 v !!)

•However, it is very important to know that for same "nucleus type", but "different nucleus" could generate different signal. This is also what make NMR useful and interesting.

•Depending on the *chemical environment*, there are **variations** on the magnetic field that the **nuclei feels**, even for the same type of nuclei.

•The main reason for this is, each nuclei could be surrounded by different electron environment, which make the nuclei "feel" different net magnetic field , B_{effect}

•Electron surrounding each nucleus in a molecule serves to shield that nucleus from the applied magnetic field. This shielding effect cause the ΔE difference, thus, different *v* will be obtained in the spectrum

 $B_{eff} = B_0 - B_i$ where B_i induced by cloud electron

 $B_i = \sigma B_0$ where σ is the shielding constant

 $B_{eff} = (1-\sigma) B_0$

 $v_{\text{precession}} = (rB_0/2\pi) (1-\sigma)$

- $\sigma=0 \rightarrow$ naked nuclei
- $\sigma > 0 \rightarrow$ nuclei is shielded by electron cloud

 $\sigma < 0 \rightarrow$ electron around this nuclei is withdraw , i.e. deshielded

Ref: Some figures copy from the web page by Guillermo Moyna, University of the Sciences in Philadelphia

•

•Homo nuclear 2D NMR : a series of 1D

Set up 1D/homo Nuclear 2D (Bruker AV system)

- What's the nucleus? → Which Prohead to choose?
 AV500 in IBMS : 5mm TXI-Z (¹H/¹⁵N/¹³C , with Z gradient) only
 AV600 in IBMS: 5mm QXI-Z (¹H/¹⁵N/¹³C /³¹P) (not ready to use yet)
 AV600 in CHEM: 5mm BBO and TXI-Z (¹H/¹⁵N/¹³C, with Z gradient)
 DRX600 in IBMS: 5mm TXI-XYZ (¹H/¹⁵N/¹³C , with XYZ gradient) and others
 5mm : ¹H , ¹H/¹⁹F , BBO, TXI(¹H/¹⁵N/¹³C) , TXI-Z (¹H/³C/³¹P)
 8mm : TXI (¹H/¹³C/¹⁵N) 8mm with Z gradient
 10mm: ¹H , ¹H /¹⁹F , BBO
- 2. What's the goal? \rightarrow Which type of experiment you need?
- 3. Which parameter set to choose? \rightarrow Experiment List
- 4. How to optimize condition? \rightarrow Experiment Guide

Definition of some AQ Commands & parameters

- edc,new edit current data set or generate a new data set
- eda.ased edit AQ parameters (eda: shows all, ased: shows required only)
- rga auto optimize rg value
- zg zero memory, and start to collect FID (go)
- go start to collect FID and add signals to the previous memory
- stop stop the active job (just one job)
- kill kill active job (can choose several jobs)
- o1.o2,o3 center frequency of the spectrum for nuclear at f1 channel (ex: 1H), f2 channel (ex:13C), and f3 channel (ex:15N)
- sw spectrum width (1 sw : F1 dimension, 2 sw: F2 dimension.....)
- td number of points for FID collection(1 td: F1 dimension, 2 td: F2 dimension...)
- d1 relaxation time (usually > 5* T1)
- ns number of scan
- ds dummy scan
- rg receiver gain (usually use the value calculated by rga)

new :New data set

edc		
		Current Data Parameters
NAME	proteinA	name of current data set
EXPND	1	Experiment number
PROCNO	1	processed data number
טס	d:	disk unit
USER	cfchang	Owner of data
TYPE	nar	data type
- 		H H
SAVE	2-	COL Parameter Next CANCEL

eda: Edit AQ parameter

CANCEL.

Panameter

Next.

SAVE

ased : shows required parameters only

<u> </u>			
		F2 -	- Acquisition Parameters
PULPROG	hncacb3d		pulse program for acquisition
TD	1024		time domain size
NS	48		number of scans
DS	128		number of dummy scans
SMH	4194,63	Hz	sweep width in Hz
AQ	0,1221108	sec	acquisition time
RG	256		receiver gain
DW	119,200	usec	dwell time
DE	4,50	usec	pre-scan-delay
BIGT	0,00690000	sec	BIGT=12.4a-TAUC-p17-200u
d0	0.01240000	sec	d0=12.4n
D1	1,1000002	sec	relaxation delay; 1-5 * T1
d10	0,00002903	sec	d10=in10*2-p21-p3*0,6366-7u
D11	0,03000000	sec	delay 11
d12	0.00002000	sec	d12=20u
d13	0,00000500	sec	d13=5u
			12
SAVE	2-	COL.	Parameter Next CANCEL

Definition of some AQ Commands & parameters

- edc,new edit current data set or generate a new data set
- eda.ased edit AQ parameters (eda: shows all, ased: shows required only)
- rga auto optimize rg value
- zg zero memory, and start to collect FID (go)
- go start to collect FID and add signals to the previous memory
- stop stop the active job (just one job)
- kill kill active job (can choose several jobs)

o1.o2,o3 center frequency of the spectrum for nuclear at f1 channel (ex: 1H), f2 channel (ex:13C), and f3 channel (ex:15N)

- sw spectrum width (1 sw : F1 dimension, 2 sw: F2 dimension.....)
- td number of points for FID collection(1 td: F1 dimension, 2 td: F2 dimension....)
- d1 relaxation time (usually > 5* T1)
- ns number of scan
- ds dummy scan
- rg receiver gain (usually use the value calculated by rga)

In the NMR LAB

- 1. The best condition for sample? \rightarrow Temperature, sample position
- 2. The best condition for NMR? \rightarrow Wobble : Tune & Match

3. The best condition for field? \rightarrow Lock and shim

(Simple Operation Guide for Bruker AV System)

4. Ready to go! (LAB work sheet)

edhead :Edit probe head

5 mm TXI 31P Z-grad	[12]
5 mm TXI 13C Z-grad	[13]
10 mm 1H	[14]
10 mm Multinuclear inverse	[15]
10 mm 2H	[16]
10 mm 13C	[17]
10 mm 15N	[18]
10 mm 31P	[19]
10 mm QNP 1H/15N/13C/31P	[20]
A	R
SAVE Add/Change Belete	Define current ABORT

edte :Edit temperature

lock

⇒ lock	
Solvent	
Acetic	5
Aceton	l
CDC13	l
CB2C12	l
CIJ3CN	
C6D6	
B20	
H20	l
DEE	l
DME	l
DMF	I
DMSO	1
Dioxan	
EtOH	
MeOH	/
aia	
EdHead Cancel	
PROBHD: 31 Selct	

edasp :Edit AQ Spectrometer

2002 NMR Training Course Basic Operation for Bruker AV System

Basic Data processing for 1D/2D using xwinnmr

Yong-Li Pan

12/23 (Mon) 11:00-12:00

Topic

- 1D NMR data process
- 2D NMR data process

1D NMR spectrum data process

Data Acquisition on Console

- 1D:Time domain data: FID
- 2D:Time domain data: SER
- FTP: XFTP, WinSCP或網路上的芳鄰將 data傳到其它工作站,利用XwinNMR, aurelia等軟體,進行data process

Procedure of 1D data process

- Getting the data set: Search
- Setup parameter of Fourier transform and execute
- Phase
 - Biggest
 - Cursor
 - MC
- Use edp menu or key in window function command to improve the resolution of spectrum
- Integration
- Plot

Current	Data Parameters										
NAME	cholac-C										
EXPNO	3										
PROCNO	1										X
F2 - Acq	uisition Parame	ters									RUKER
Date	20011108										IVI
Time	17.36										$\langle \rangle$
TNUTRIN	drx60	D									
PROBIED	Som Hat Hat6	-									
PULPROG											1.
TO	65536										11
SCLVENT	CDC13										
Ne											
20											
4100	35071 223	10-									
TIME	0 549977	No.									
E MARIES	0.000077										
20	0.9110143	sec									111
NG DW	32/68	-								1	111
DW	13.900	usec									111
DE	6.00	used									111
TE	300.0	ĸ									111
DI	2.00000000	sec									111
DII	0.03000000	500									111
D12	0.00002000	sec								1.1	
	CRANNEL E1										1111
NOC1	130										
P1	12.20	usec							14		
PIN	-5.00	dB									
SPOI	150.9178388	MIL				1					
	CRANNEL 12									6	
CPDPRG2	waltz16										
NUC2	18										
PCPD2	73.00	usec									
PL2	-3.00	dB									
PL12	17.00	db									
PL13	20.00	dB									
SP02	600.1318004	MHz									
F2 - Pro	cessing paramete										
SI	32768										
NUM											
LB	0.00	Ha									
											. I students
		_									
		200	400	100	140	100	400	80	00	10	20 0
		200	180	100	140	120	100	00	00	40	20 0 ppn

Getting the data set

- *Time domain data:*
 - /Disk/data/user/nmr/Filename/Expno/fid
- Frequency domain data:
 - /Disk/data/user/nmr/Filename/Expno/pdata/pro cno/1r
 - /Disk/data/user/nmr/Filename/Expno/pdata/pro cno/li

1D data file path

NMR5 21% pwc /y2/data/ete NMR5 22% 1s	∦ en/nmr/std_1[)/1/pdata/1		
li lr auditp.txt NMR5 23% ∏	int intgap intrng	meta meta.ext outd	parm.txt peaks proc	procs title

Getting the data set

<u>1</u>				
File Edit View Favorites Tools Help				
🗢 Back 🔹 🔿 👻 🔂 🐼 Search 🖓 Folders 🔇	🎼 📽 🗙 🔊 🔳•			
Address D:\data\sc_sue\nmr\HDGF-105\1\pdata\1				▼ 🔗 Go
	1r auditp	meta meta.ext	outd proc	
1				
Select an item to view its description.				
See also: procs				
My Documents				
My Network Places				
My Computer				

File Search

📥 🛛 Portfolio Edit	or	•					
<u>F</u> ile <u>E</u> dit							
Unit:	Name:	Expno: Procno:					
u y1 y2 z Vser: Cfchang ellen eten	std_1D std_2D_HSQC_C std_2D_HSQC_N std_3D_BB ~TEMP						
	Double-click or press "Append" to add data set to portfolio						
Portfolio:							
Double-click or press "Apply" to select data set from portfolio							
Apply Appl	end Insert	Remove Close					

1D layout with fid (raw data)

Data Process

下拉式 選單之 process

zg : res. exp. time = 12h 13min 0sec

General parameter for processing (edp)

 The edp command opens a dialog box which allows you to set the parameters required by the various commands in the Process menu. The parameters are described along with the commands which make use of them.

Setting the size of the real spectrum

CPR	
SI = 32 k	A
TD = 64 k	
TD = 64 k	
SI =	32 k
<u>الا</u>	

SI (>=1/2 TD)

Process Command

- General parameter setup (edp)
- Line broadening factor (lb)
- Exponential multiply (em)
- Manual window adjust (winfunc)
- Real spectrum size (si)
- Fourier transform (ft)

Process Command

- Autophase correction (apk)
- Alternative autophase corr. (apks)
- Manual phase correction (phase)
- Special processing
 - Phase w. constants PHC0,1 (pk)
 - Magnitude spectrum (mc)
 - Power spectrum (ps)
 - Special window function:
 - Gaussian (gm), Trapezoidal TM, Sine (sine), Squared sine (qsin), Sinc (sinc)

Process Command

- Baeline correction
 - Automatic full spectrum (abs)

Spectrum calibration

- H2O: MRS, 4.7ppm
- TMS: 有機小分子, 0 ppm
- DSS: 生物分子, 0 ppm

Use "SR" (edp 內之參數)根據不同溫度校正

Window function

- Line broadening factor (lb)
- em, gm:window function
- key in lb =0.3, type em to execute
- MC: 取實部和虛部平方之開根號, spectrum 皆為正
- Manual adjust window function: 可先預覽各 種window function之執行結果, 是否可提高 spectrum之resolution

Manual adjustment of window function

Fourier Transform Command

- ft
- Sequential operations:
 - em + ft (ef)
 - em + ft +pk (efp)
 - gm +ft (gf)
 - gm +ft +pk (gfp)

Phase correction

- 1DZG: 量line width, 觀察shimming情形
 Phase時, 可選H2O當biggest,再phase
- 1DZGPR: one pulse with f1 presaturation,
 因為有打水,所以要用cursor選其它peak,
 再進行phase
- PH0: first order
- PH1: second order

1D NMR spectrum scale adjust

Baseline Correction

 Automatic baseline correction -abs

Spectrum integration

 點選integration之button,再用滑鼠來點 選欲積分之範圍,於光譜下方會出現積 分值

Manual integration

2D NMR Spectrum data process

Procedure of 2D data process

- Getting the data set: Search
- Setup parameter of Fourier transform and execute (xfb)
- Phase
- Baseline Correction
- Setup contour level (edlev)
- Plot

Getting the data set

- *Time domain data:*
 - /Disk/data/user/nmr/Filename/Expno/ser
- Frequency domain data:
 - /Disk/data/user/nmr/Filename/Expno/pdata/procno/2rr
 - /Disk/data/user/nmr/Filename/Expno/pdata/procno/2ri
 - /Disk/data/user/nmr/Filename/Expno/pdata/procno/2ir
 - /Disk/data/user/nmr/Filename/Expno/pdata/procno/2ii

2d NMR data file

NMR5 41% pwd /y2/data/eten/nmr/std_2D_HSQC_N/2/pdata/1 NMR5 42% 1s							
211	Arr.fb	dsp_low	meta.ext	p2r1	proc2		
2ir	auditp.txt	level	n2r1	p2r2	proc2s		
2ri	dsp	luta	n2r2	parm.txt	procs		
2nn	dsp.hdr	meta	outd	proc	title		
2d NMR data

2D FID (SER)

edp

🗙 edp			×
Processing Parameters	F2	F1	
SI	2048	512	4
PPARMOD	20		
SF	500,1300000	50,6777330	MHz
OFFSET	11,701	140,003	ppm
SR	0.00	0.00	Hz
Н2рРТ	3,419337	3,959706	Hz
MC2		echo-antiecho	
AQORDER	3-2-1		
MDM	QSINE	QSINE	
SSB	4	4	
LB	0.00	0.00	Hz
GB	•	0	
PH_mod	pk	pk	
PKNL	TRUE		
PHCO	-14,112	0.000	degrees
PHC1	33,400	0.000	degrees
a			12
SAVE	Para	Next	CANCEL

edp

X eap				×
Processing Parameters	F2	F1		
BC_mod	no	no		A
BCFW	1.000	1.000	рра	
FT_mod	no	no		
FCOR	0,5	0.5		
ME_mod	no	no		
COROFFS	0.00	0.00	Hz	
NCOEF	0	16		
LPBIN	0	128		
ABSF1	1000,000	1000,000	ppm	
ABSF2	-1000.000	-1000.000	ppm	
ABSG	5	5		
ABSL	3	3		-
TDeff	0	0		
TDoff	0	•		
STSR	0	0		
STSI	960	0		
51				
SAVE	Parameto	er Next.		CANCEL

edp

🗙 edp			<u>×</u>
Processing Parameters	F2	F1	
TDeff	0	•	4
TDoff	0	0	
STSR	0	0	
STSI	960	0	
SREGLST	1H.DMSO		
REVERSE	FALSE	FALSE	
AUNMP	proc_2dinv		
DATMOD	proc	proc	
ті			
TM1	0	0.1	
TM2	0	0.9	
ALPHA	0	0	
GAMMA	1	1	
NLEV	6		
LEVO	35,00		
TOPLEV	100,00		×
a			
SAVE	Parame	Next	CANCEL

Fourier transform

- SI (>=1/2 TD)
- xfb (execute Fourier transform both)

2D NMR Phase (Row)

2D NMR Phase (column)

2D spectrum after phase

Baseline Correction

- Automatic baseline correction
 - abs2, abs1

Contour level (edlev)

XWIN-PLOT

- • 啟動XWIN-PLOT應用程式
 – Windows menu→plot-editor
- 畫出一維頻譜及參數檔內容
- 標題的設定 (title)
- 加上Peak Picking
- 加上積分值
- 列印一維頻譜

Start XwinPlot

Plot editor

THERE SEAT - DA MANNET

XwinPlot 1D

- X-Win Plot Editor	r: "+ЛD_Н.хwp"				
Eile Edit XWIN	I-NMR Qptions				Help
Data Attributes	Zaam In Zaam Out Full	Detete Copy Group	Ungraup Rotate	ENI ID/2D-Edit	Unda
EXPAND ZOOM	9000-		Current NAME EXPRO FROCINO FROCINO FROE Date_ Tixe INSTRUM FROE FULFROG TD SOLVENT N3 D6 SWH FILESS	Data Parameters atd_lD 1 1 20021102 12.13 apect 5 MM TAI 13C 2 5 MM TAI 13C 2 5 MM TAI 13C 2 1002180 10021801 Mm 0.213709 Ms	
Title 薩 从JA	7000- 6000- 5000- 4000- 3000-		AQ RO DW DE TE D1 SUC1 P1 PL1 SP01	2.3396852 mer 1 71.400 taser 6.50 taser 300.0 K 1.50000000 mer CHANRMEL f1 1H 7.50 taser 0.00 db 500.1323507 MHz	
T _i T ₂	2000 - 1000 - 0 -		F2 - Pr ST SF NDW ST5 GB F2 P2 1D 1065 1	00000000000000000000000000000000000000	
	-1000	7 6 5 4 3 2 1 0	сл сл я1р я1р я2р я2 ренсы масн	20.00 cm 5.130 ppm 2569.51 Hs 4.263 ppm 2131.83 Hz 0.04376 ppm/cm 21.88375 mg/cm	
Mode:					A.

2D NMR Plot

Experiments Set up for hetero nuclear 2D/3D

Chi-Fon Chang NMR Core Facility 2002/12/24

2D Homo Nuclear

<u>1H-1H</u>

Hetero Nuclear 2D/3D NMR

What are they?

Example of 2D Hetero Nuclear NMR: HSQC or HMQC

The HSQC or HMQC experiment allows to trace out directly bonded ¹H-X pairs via the large ¹J_{HX} coupling constant

2D 1H-13C HSQC

Example of 2D Hetero Nuclear NMR: HMBC

The HMBC experiment allows to trace out longa-range (typically two- and threebonds away) ¹H-X pairs via the small ⁿJ_{HX} coupling constant.

Example of 3D Double Resonance NMR: HCCH-TOCSY (side chain assignment)

The 3D HCCH-TOCSY experiment is specifically designed to correlate sidechain aliphatic proton and ¹³C resonances via ¹J(CH) and ¹J(CC) coupling constants. The experiment provides nearly complete assignments of all aliphatic ¹H and ¹³C resonances.

1H-13C

.

Example of 3D Double Resonance NMR:NOESY-HS(M)QC (through space)

The 3D NOESY-HSQC or NOESY-HMQC experiment is specifically designed to obtain X-edited NOESY spectra of X-labeled biomolecules from which homonuclear ¹H-¹H NOEs can be clearly assigned even in overcrowded regions

Example of 3D Triple Resonance NMR: for Nucleic Acids

The 3D HCP experiment is a ¹H-¹³C-³¹P triple-resonance experiment specifically designed to assign the ribose H3'/C3', H4'/C4' on the 5' side and, H4'/C4' and H5',H5''/C5' resonances on the 3' side of the intervening phosphorus in ¹³C-labeled nucleic acids.

The 3D HCN experiment allows to obtain sugar-to-base correlations from the H1'(sugar) to N1/N9 (base) via C1'(sugar) ($H_sC_sN_b$ experiment)

or non-exchangeable base proton assignments from the H6/H8 (base) to N1/N9 (base) via C6/C8 (base) ($H_bC_bN_b$ experiment) in ¹³C,¹⁵N-labeled nucleic acids.

Example of 3D Triple Resonance NMR: for protein/peptide sequential

Hetero Nuclear 2D/3D NMR

How to get spectra?

What's the sample? → Which Prohead to choose?
 AV500 in IBMS : 5mm TXI-Z (¹H/¹⁵N/¹³C , with Z gradient) only
 AV600 in IBMS: 5mm QXI-Z (¹H/¹⁵N/¹³C /³¹P) (not ready yet)
 AV600 in CHEM: 5mm BBO and TXI-Z (¹H/¹⁵N/¹³C, with Z gradient)
 DRX600 in IBMS:

5mm : ¹H , ¹H/¹⁹F , BBO, TXI (¹H/¹⁵N/¹³C) , TXI - Z (¹H/³C/³¹P), TXI - XYZ (¹H/¹⁵N/¹³C , with XYZ gradient) 8mm : TXI (¹H/¹³C/¹⁵N) 8mm with Z gradient 10mm: ¹H , ¹H /¹⁹F , BBO

- What's the goal? \rightarrow Which type of experiment you need?
- Which parameter set to choose? → Experiment List
```
• How to optimize condition? → For users: Experiment Guide
```

```
•Experiment Name: 3D HNCO
```

•Experiment Type: Using Echo/antiecho, f1: H, f2:C, f3:N, F1(CO), F2(N), F3(H)

•Standard Parameter Set: std_3D_HNCO

•Pulse Program: hncogp3d.2

•AQ parameters to check

1H pulses

```
pl1 (high power, ex: 0db), p1(90deg at pl1), p2(180deg at pl1)
pl19 (low power for dipsi2,pcpd1), p26(90deg at pl19), pcpd1(90deg ,ex: 40-50usec)
sp1 (shape pulse power for Sinc.1000) , p11(pulse length for sp1, ex: 2m)
```

Others

o1 (for 1H), **o2** (for 13CO), **o3** (for 15N)

1 sw, 1 td (for F1 dimension, ie: 13C)

2 sw, 2 td (for F2 dimension, ie:15N)

3 sw, 3 td (for F3 dimension, ie:1H)

d1, rg, ns(=8*n), ds (16)

Users need to adjust parameters in "red" (meaning of the parameter in "green")

- How to optimize condition? → For operators : pulse program
- (1) hard pulse calibration for hetero nuclei
- (2) Shape pulse calibration for hetero nuclei
- (3) other "uniform" (sample independent) parameters set up

ex: delays, decouple program, gradient program, frequency jump......

```
;hncogp3d.2
;avance-version (01/05/09)
;HNCO
.....( skips)
    F1(H) -> F3(N) -> F2(C=O,t1) -> F3(N,t2) -> F1(H,t3)
;on/off resonance Ca and C=O pulses using shaped pulse
;phase sensitive (t1)
;phase sensitive using Echo/Antiecho gradient selection (t2)
.....( skips)
;sp1: f1 channel - shaped pulse 90 degree (H2O on resonance)
;sp2: f2 channel - shaped pulse 90 degree (C=O on resonance)
;sp3: f2 channel - shaped pulse 180 degree (C=O on resonance)
;sp5: f2 channel - shaped pulse 180 degree (Ca off resonance)
;sp8: f2 channel - shaped pulse 90 degree (C=O on resonance)
          for time reversed pulse
```

(skips)	
;d21: 1/(2J(NH)	[5.5 msec]
;d23: 1/(4J(NCO)	[12 msec]
;d26: 1/(4J'(NH)	[2.3 msec]
(skips)	

;cpds1: decoupling according to sequence defined by cpdprg1 ;cpd3: decoupling according to sequence defined by cpdprg3 ;pcpd1: f1 channel - 90 degree pulse for decoupling sequence ;pcpd3: f3 channel - 90 degree pulse for decoupling sequence

; use gradient ratio:gp 1 : gp 2 : gp 3 : gp 4 : gp 5;60 : -40 : 10 : 80 : 8.1

In the NMR LAB

- 1. The best condition for sample? \rightarrow Temperature, sample position
- 2. The best condition for NMR? \rightarrow Wobble : Tune & Match

- 3. The best condition for field? \rightarrow Lock and shim
- 4. Ready to go! (<u>LAB work sheet</u>)

edhead :Edit probe head

5 mm TXI 31P Z-grad	[12]
5 mm TXI 13C Z-grad	[13]
10 mm 1H	[14]
10 mm Multinuclear inverse	[15]
10 mm 2H	[16]
10 mm 13C	[17]
10 mm 15N	[18]
10 mm 31P	[19]
10 mm QNP 1H/15N/13C/31P	[20]
A	R
SAVE Add/Change Belete	Define current ABORT

edte :Edit temperature

lock

⇒ lock	
Solvent	
Acetic	5
Aceton	l
CDC13	l
CB2C12	l
CIJ3CN	
C6D6	
B20	
H20	l
DEE	l
DME	l
DMF	I
DMSO	1
Dioxan	
EtOH	
MeOH	/
aia	
EdHead Cancel	
PROBHD: 31 Selct	

edasp :Edit AQ Spectrometer

gradshim : gradient shimming

Wobble all 3 channels: $15N \rightarrow 13C \rightarrow 1H$

Step 1.1: (15N first) edasp to change setting and connection

Step 1.2: type wobble to wobble 15N, type stop after tune and match

Wobble all 3 channels: $15N \rightarrow 13C \rightarrow 1H$

Step 2.1: (13C) edasp again to change setting and connection

Step 2.2: type <u>wobble</u> to wobble 13C, click any key on "HPPR" after 13C tuning and matching are done.

Wobble all 3 channels: $15N \rightarrow 13C \rightarrow 1H$

Step 3.1: click "Chn ↑" on "HPPR" , then wait until wobble on 1H pop out (this might take 10-20 sec, please be patient!)

Step 3.2: type stop after tuning and matching are done for 1H.

Step 3.3: edasp to change setting and connection for the experiment

NMR data processing software

XWINNMR (process NMR data on IRIX 6.X & Linux)

License only available for older version

nmrPipe (process NMR data on IRIX6.X & Linux)

NMR data analysis software

AURELIA (analyze NMR data on IRIX 6.X & Linux)

License only available for older version

nmrDraw (analyze NMR data on IRIX 6.X & Linux)

nmrView (analyze NMR data on IRIX 6.X & Linux)

Sparky (analyze NMR data on Linux)

Thank you!!

cfchang@ibms.sinica.edu.tw

3D data processing and Display

Xwinnmr processing 3D data Sparky display processed NMR spectra

NMR core tsunai yu

Strategies for protein NMR studies

Protein/Size	Experiment	Information obtained	Sensitivity
Unlabeledi less than 50.a.a.	2D Homonuclear		
	COSY, TOCSY	intra-residue assignments	
	NOESY	sequential connectivities NOE distance constraints ${}^{3}J_{HN\alpha}$ coupling constants	
	E.COSY	${}^{3}J_{H\alpha\beta}$ coupling constants	
¹⁵ N-labeled/ ~ 50-80 .a.a.	3D Double resonance		
	¹⁵ N-TOCSY	intra-residue assignments	
*	¹⁵ N-NOESY	sequential connectivities NOE constraints	
*	¹⁵ N-HNHA	${}^{3}J_{HN\alpha}$ coupling constants	
	or 2D HMQC-J	${}^{3}J_{HN\alpha}$ coupling constants	
	¹⁵ N-HNHB	${}^{3}J_{H\alpha\beta}$ coupling constants	

Table 1: Strategies for protein studies

Protein/Size	Experiment	Information obtained Sensitiv	
13C, 15N-labeled/	abeledi 3D NB. Possibly		
~ 80-150 .a.a.	Double resonance	fractionally ² H-labeled	
*	¹⁵ N-NOESY	NOE constraints	
*	¹⁵ N-HNHA	³ J _{HNa} coupling constants	
	¹⁵ N-HNHB	³ J _{Haβ} coupling constants	
	¹³ C HCCH-COSY	intra-residue assignments	
*	¹³ C HCCH-TOCSY	intra-residue assignments	
	¹³ C NOESY	sidechain NOE constraints	
	3D Triple resonance		
	HNCO	sequential connectivity	100 inter
	HN(CA)CO	sequential connectivity	13/4
		(combine with HNCO)	inter/intra
*	HNCA	sequential connectivity	50/15
		$^{13}\!C^{\alpha}$ chemical shift constraints	intra/inter
*	HN(CO)CA	(combine with HNCA)	71 inter
	HNCAH	sequential connectivity	
	HN(CO)CAH	(combine with HNCAH)	
	CBCA(CO)NH	sequential connectivity	13/9
		$^{13}C^{\alpha}$ and $^{13}C^{\beta}$ chemical shifts	$^{13}C^{\alpha}/^{13}C^{\beta}$ intra
	CBCANH	for smaller proteins (combine	4/1.7
		with CBCA(CO)NH)	$^{13}C^{\alpha}/^{13}C^{\beta}\text{intra}$
	HNCACB	for bigger proteins (combine	1.3/0.5
		with CBCA(CO)NH)	$^{13}C^{\alpha}/^{13}C^{\beta}$ intra
 HBHA(CO)NH 		¹ H ^x and ¹ H ^β assignments	13/9
			$^{1}\text{H}^{\alpha}$ / $^{1}\text{H}^{\beta}$ intra
*	H(CCCO)NH	sidechain ¹ H assignments	
	(H)CC(CO)NH	sidechain ¹³ C assignments	

edp --- Display Processing parameter

edp - Display Processing parameter

	ela				
	Processing Pa	rameters	F3	F2	F1
	BC_mod	no	no	no	
	BCFW	1.000	1.000	1.000	ppm
	FT_mod	no	no	no	
	FCOR	0.5	0,5	0.5	
	ME_mod	no	no	no	
	COROFF5	0.00	0.00	0.00	Hz
	NCOEF	0	0	0	
	LPBIN	0	0	0	
	ABSF1	4,700	1000,000	1000,000	ppm
	ABSF2	-100.000	-1000.000	-1000.000	ppm
	ABSG	5	5	5	
	ABSL	3	3	3	
	TDeff	0	0	0	
	TDoff	0	0	0	
Strip start 🗸	STSR	0	0	0	
<pre># of raw data points of +</pre>	STSI	0	0	0	
strip transform					12
	SAVE		Parameter	Next	CANCEL

F edp Processing Parameters F3 F2 F1 TDeff 0 0 0 TDoff 0 0 0	lelp
Processing Parameters F3 F2 F1 TDeff 0 0 0 TDoff 0 0 0	
TDeff 0 0 0 0	
TDeff 0 0 0 TDoff 0 0 0	
STSR 0 0 0	
STSI 350 0 0	
SREGLST	
REVERSE FALSE FALSE	
AUNMP proc_1d	
DATMOD proc proc proc	
X ⁴ TI DRX600	
- TM1 0 0.1 0.1	
<u>т</u> тм2 0 0.9 0.9	
r ALPHA 0 0 0 0 223	44
GAMMA 1 1 1	
TOPLEV 0.00 X	
SHVE CANCEL 0	13

edp - Display Processing parameter

3D processing

•Phase 2D plane (F1-F3 plane and F2 F3 plane)

eg. HNCACB F3(¹H), F2(¹⁵N), F1(¹³C)

rule: phase ¹H-¹⁵N() and ¹⁵N-¹³C plane

xfb \rightarrow select direction (13or 23) :

enter slice number [1,,96]:

enter new PROCNO for 2D data:

	XWIN-NMR Version 2.5 on nmr	9 started by ellen			
F	🗕 edp				Help
	Processing Parameters	F2	F1		
-	SI	1024	64	A	
*	PPARMOD	20			
*	SF	600,1299496	60,8106385	MHz	
a	OFFSET	9.841	137,906	ppm	
	SR	-50,40	0.00	Hz	
	HZpPT	5.868765	188.650772	Hz	
	MC2		echo-antiecho		
	AQORDER	3-1-2			
	WDW	QSINE	QSINE		
	SSB	2	2		
iı	LB	0.00	0.00	Hz	
	GB	0	0		223 191
	PH_mod	no	no		L L
	PKNL	TRUE			
	РНСО	49,300	150,525	degrees	
	PHC1	-5,800	-100,400	degrees	
				K1	
	SAVE	Param	Next	CANCEL	0 174
>					

		F3(H)	F2(C)	F1(N)
13 plane	PHC0	49.3		150.252
	PFC1	-5.8		-100.400
23 plane	PHC0	X1	58.249	
	PHC1	X2	-180.6	

If X1 13 plane PHC0 value, X2 13 plane PHC1 value Use the HSQC plane phase value (eg.13 plane in this case)

	XWIN-NMR Ver.	sion 2.5 on nmr9 start	ed by ellen				
F	📥 edp					Help	
	Processing	Parameters	F3	F2	F1		
	SI	1024	256	64	A		
	PPARMOD	30	J]]			
	SF	600,1299496	150,9023938	60,8106385	MHz		
	OFFSET	9.841	94.359	137,906	ppm		
	SR	-50,40	-355,23	-24.52	Hz		
	HZpPT	5,868765	47,162693	33,260605	Hz		
F	MC2		States	echo-antiecho			
	AQORDER	3-1-2					
×	WDW	QSINE	QSINE	QSINE			
	SSB	2	2	2			
m	LB	0.00	0.00	0.00	Hz		
m	GB	0	0	0		223 144	
	PH_mod	no	no	pk			
	PKNL	TRUE					
	PHCO	49,300	58,249	150,525	degrees		
	PHC1	-5.800	-180.600	-100.400	degrees 📈		
	SAVE		Parameter	Next	CANCEL	0 113	
>	>						
-							

3D processing

•Applying the 3D Fourier Transform

tf3 no (processed 3D data in F3 dimension without imaginary data) tf2 no tf1 no

•Baseline correction

tabs3 (automatic baseline correction in the F3 dimension)

tabs2

tabs1

Sparky display processed NMR spectra

Adventage

- •Using a graphical interface (in PC, linux, and unix)
- •Work with 2-4 dimensional spectra
- •Suitabe display with other process program
- •Output suitable for other structure determination program

•Free license

Start sparky

•Under unix the command to run Sparky is "sparky". The installation locaton is /usr/local/sparky/bin.

•Under windows(95, 98,or NT) double clicking sparky.bat in c:\progranfiles\sparky\bin c:\progranfiles\sparky\bin

Open spectra

Converting processed data to UCSF format by bruk2ucsf, pipe2ucsf,vnmr2ucsf.....

eg. in PC

c:\progranfiles\sparky\bin> bruk2ucsf d:\data\nie.310\12\pdata\1\3rrr

d:\sparky\data\noe.ucsf

🏧 命令提示字元 (2)

🖾 命令提示字元 (2)	
Microsoft Windows 2000 [版本 5.00.2195]	▲
(C) Copyright 1985-1999 Microsoft Corp.	
C:\>cd \program files\sparky\bin	
C: Yrogram Files \sparky\01n/air 磁碟画 c 由的磁碟波扫描链。	
磁磁區 字腔: 7CF6-19D0	
HYYHY (11) 1,000 - 1000 - 1000	
目錄: C:\Program Files\sparky\bin	
2002/10/08 04:32p <dir> .</dir>	
2002/10/08 04:32p <dir></dir>	
2002/02/19 02:27p 307,892 bruk2ucsf.exe	
2002/02/19 02:27p 311,924 matrix2ucsf.exe	
2002/02/19 02:27p 318,969 peaks2ucsf.exe	
2002/02/19 02:27p 308,119 pipe2ucsf.exe	
2002/02/19 02:27p 1,321,338 sparky-no-python.exe	
2002/02/19 02:27p 1,870 sparky.bat	
2002/02/19 02:27p 316,936 ucsfdata.exe	
2002/02/19 02:27p 308,404 vnmr2ucsf.exe	
8 個檔案 3,195,452 位元組	
2 個目錄 4,631,437,312 位元組可用	

C:\Program Files\sparky\bin>bruk2ucsf.exe D:\Traning.1124\26\pdata\1\3rrr E:\Spa rky\save\test.ucsf

C:\Program Files\sparky\bin>