

Workshop on Glycobiology NMR

Yann Guérardel yann.guerardel@univ-lille1.fr

Emmanuel Maes emmanuel.maes@univ-lille1.fr

Université de Lille 1 sciences 1 et technologies

- Short presentation
- Structure of carbohydrates
- Structural approaches
- Use of NMR for glycan structure
- Classical NMR experiments
- What use of NMR for glycobiology
 - de novo sequencing
 - Glycomics profiling
 - Surface analysis: HR-MAS NMR
 - DOSY NMR
 - Protein-carbohydrate interaction

Unité de Glycobiologie Structurale et Fonctionnelle UGSF, UMR 8576, LILLE

Monothematic institute on glycobiology

- > 12 groups
- ➢ 60 researchers (CNRS, University, INSERM, INRA)
- > 30 masters et doctor students
- 20 technical staff

Three main approaches:

- Structural Glycobiology and Modelisation
- Functions and Regulations of Glycosylation Enzymes
- Glycobiology and Pathologies

Structural Glycobiology of Host-Pathogens Interactions

http://plateforme-pages.univ-lille1.fr

A post-translational modification

Structure of carbohydrates

Definitions

- Carbohydrates are made of monosaccharides
- Monosaccharides are poly-hydroxy-aldehydes ou poly-hydroxy-ketons
- > All monosaccharides have an asymetric carbon, except for dihydroxyacétone

D/L Configuration

Essentials of Glycobiology

Aldoses D series

Formation of hemi-acetals

Hemiacetal

Cyclic hemiacetal

Essentials of Glycobiology

Equilibrium during cyclisation of D-glucose

Essentials of Glycobiology

Fischer & Haworth projections

Common monosaccharides in vertebrates

Essentials of Glycobiology Second Edition

NCBI

)--(

Many other monosaccharides 500 to 600 known

Caryophyllose

Caryophyllose Hydroxylé

)-(

Structural Diversity

)--(

Two isomeres of disaccharides

Disaccharides WITHOUT reducing extremities

Glcα1Glcα1 (trehalose)

Glcα2Fruβ (sucrose)

Structural Approaches

Fe Ru

Imaging

Protein structure

Fluorescence intensity (FL2) PE-ICAM-1

Cell biology

Synthesis

)	(
٢	Acronym FACE

spectrometry

Acronym FACE	Technique fluorophore-assisted <u>carbohydrate</u> electrophoresis	Description gel-electrophoresis-based chromatographic technique for separating samples derivatized with an anionic fluorophore	Use separation, identification, and quantification of labeled mono- and <u>oligosaccharides</u>
GLC or GC	gas-liquid chromatography or gas chromatography	gas-phase chromatographic technique for separating volatile derivatized samples	sugar composition and linkage analysis; usually interfaced with MS
HPAEC-PAD	high-pH anion-exchange chromatography–pulsed amperometric detection	ion-exchange liquid chromatographic separation technique carried out at high pH	separation, identification, and quantification of mono- and oligosaccharides without derivatization
HPCE	high-performance capillary electrophoresis	chromatographic technique for separating charged molecules	separation, identification, and quantification of charged glycans; sometimes inter faced with MS
HPLC	high-pressure liquid chromatography	chromatographic technique for analytical and preparative separations	separation of all classes of glycans and glycoconju gates; may be interfaced with MS
HPTLC	high-performance thin-layer chromatography	chromatographic technique for analytical separations	glycolipid characterization
SDS-PAGE	sodium dodecyl sulfate- polyacrylamide gel electrophoresis	gel electrophoresis technique for separation of proteins according to molecular weight	glycoprotein characterization
PAS	periodic acid–Schiff reaction	colorimetric determination of sugars	detection of glycans
NMR	nuclear magnetic resonance	ID NMR spectroscopy	number and anomeric configuration of monosaccharides in a glycan
COSY	correlation spectroscopy	2D NMR spectra; cross-peaks indicate protons joined by few bonds	identity and anomeric configuration of monosaccharides in a glycan
TOCSY	total correlation spectroscopy	2D NMR spectra; cross-peaks define whole spin system (e.g., one monosaccharide residue)	identity and anomeric configuration of monosaccharides n a glycan
NOESY	nuclear Overhauser effect spectroscopy	2D NMR spectra; cross-peaks indicate protons close in space	sequence analysis, conformational analysis
ROESY	rotating-frame NOESY	2D NMR spectra; cross-peaks indicate protons close in space; better than NOESY for <u>oligosaccharides</u>	sequence analysis, conformational analysis
НМВС	heteronuclear multiple bond spectroscopy	2D NMR spectra; cross-peaks indicate proton and C, N, or P atom linked by few bonds	assignment of NMR signals to atoms in structure; sequence and substitution analysis
HSQC	heteronuclear single- quantum coherence spectroscopy	2D NMR spectra; cross-peaks indicate proton and C, N, or P atom linked by one bond	assignment of NMR signals to atoms in structure
MS	mass spectrometry	technique for mass measurement of gas-phase ions	primary structure analysis of biopolymers
FAB	fast atom bombardment	MS ionization technique	mass mapping and sequence analysis of <u>glycans</u> and <u>glycolipids</u>
MALDI	matrix-assisted laser desorption ionization	MS ionization technique	mass mapping of <u>glycans</u> and <u>glycoconjugates;</u> important for <u>glycomics</u>
ESI	electrospray ionization	MS ionization technique	molecular weight and sequence analysis of glycans and glycoconjugates; glycoproteomics
CAD-MS/MS	collisionally activated decomposition mass spectrometry/mass	s tandem MS technique in which fragment ions are produced	sequence analysis of glycans and glycoconjugates

from a selected parent ion via collisions with an inert gas

Analytical tools

Technics

Mass spectrometry (MS)

Information

- > Molecular weight
- Monosaccharide sequence
- Substitution (methyl, acetyl...)

Gas chromatographymass spectrometry (GC-MS)

- Monosaccharidic compositionLinkage
 - Conformation D and L

- Carbon configurations
- Conformation
- Anomer (α or β)
- Linkage
- Substitution

Use of NMR for glycan structure

What does NMR provides?

Which atoms do we observe?

N-acetyl-D-Galactosamine

N-acetyl-(α) β -D-Galactopyranosamine

Mostly ¹H and ¹³C, but also ³¹P

Chemical exchange

Exchange all mobile/non informative protons (-NH, -OH) by deuterium

R : OH, -NHCOCH₃

R : OD, -NDCOCH,

increase signal/noise ratio

Parameters to look for

1 Influence of electronic density

¹³C spectrum

Downfield

OG Cuniculi P20-30 D20 300K VT_OG_cunicul_P20_30 1 1

How to define the configuration of monosaccharides?

How to define the configuration of monosaccharides?

Coupling constant (Hz) Values for scalar homonuclear H-H

 ${}^{3}J_{\rm H,H}$ can be predicted from the dihedral angle between two protons

4 Coupling constant (Hz) Value estimation

α -D-galactose

→ ³J_{H,H} < 5 Hz

4 Coupling constant (Hz) Shape

The shape depends on the number of neighbouring atoms

4 Coupling constant (Hz)

Determination of the spin system of β -D-Galactose in two dimensions

Η,

 ${}^{\scriptscriptstyle 3}J_{\scriptscriptstyle H2,H1}$

 ${}^{\scriptscriptstyle 3}J_{\scriptscriptstyle H2.H3}$

Quadruplet

(pseudo-triplet)

 ${}^{3}J_{\rm H2,H1} \sim 10 {\rm Hz}$

 ${}^{3}J_{\rm H2,H1}$ and ${}^{3}J_{\rm H2,H3}$ almost similar

Shape on 1D spectrum

Summary for β -D-Gal configuration

No need of ${}^{3}J_{H5,H6}$ and ${}^{3}J_{H5,H6}$, to establish the configuration

β-D-Glc

 α -L-Fuc

Coupling constant (Hz)

Koerner table

	vicinal o	coupling o	constants		Stereochemistry of aldopyranosic residues						
J _{1,2} J _{2,3} J _{3,4} J _{4,5}			J _{3,4}	J _{4,5}	Configuration	Conformation	Exemples				
	L	L	L	L	β-gluco	⁴ C ₁	β-D-Glc, β-D-GlcNAc, β-D-Qui				
	L	L	L	S	α- ido	¹ C ₄	(α-D-Idose)				
	L	L	S	L	impossible						
	L	L	S	S	β-galacto	⁴ C ₁	β-D-Gal, β-D-GalNAc, β-L-Fuc, β-D-Fuc				
					α- altro	¹ C ₄	(α-D-Altrose)				
	L	S	L	L	impossible						
	L	S	L	S	impossible						
	L	S	S	L	β- allo	⁴ C ₁	(β-D-Allose)				
	L	S	S	S	β- gulo	⁴ C ₁	(β-D-Gulose)				
	S	L	L	L	α-gluco	⁴ C ₁	α -D-Glc, α -D-GlcNAc, α -D-Qui				
	S	L	L	S	β- <i>ido</i>	¹ C ₄	(β-D-Idose)				
	S	L	S	L	impossible						
	S	L	S	S	α-galacto	⁴ C ₁	α -D-Gal, α -D-GalNAc, α -L-Fuc, α -D-Fuc				
	S	S L L α-manno		α- <i>manno</i>	⁴ C ₁	α -D-Man, α -D-ManNAc, α -L-Rha					
					β- <i>manno</i>	⁴ C ₁	β-D-Man, β-D-ManNAc				
	S	S	L	S	lpha-gulo	¹ C ₄	(α-D-Gulose)				
	S	S	S	L	α et β -altro, α -allo	⁴ C ₁	$(\alpha \text{ or } \beta\text{-D-Altrose}, \alpha\text{-D-Allose})$				
	S	S	S	S	α et β <i>-ido</i> , α <i>-gulo</i>	⁴ C ₁	(α et β -D-Idose)				
					α- gulo	4 C 1	(α-D-Gulose)				
					α et β <i>-talo</i>	4 C 1	(α et β -D-Talose)				

5 nOe effects

Dipolar coupling when distance<5Å

experiments : ROESY (MW<2500 Da), NOESY (MW>2500 Da)

Classical NMR experiments

Strategy

Useful databases

Sweet-DB

http://www.glycosciences.de/sweetdb/

BCSDB (Polysaccharides)

http://csdb.glycoscience.ru

> BMRDB (Biological Magnetic Resonance Data Bank)

http://www.bmrb.wisc.edu/metabolomics/query_metab.php

Glycobase

http://glycobase.univ-lille1.fr/base/

Proton 1D Easy answers

Spectra usually too complex to be interpreted completely by a first order approach

- How many monosaccharides?
- How many oligosaccharides?
- Is there sialic acid?
- How many aminated sugar?
- How many deoxysugars?

➢ How pure is the sugar fraction?

Anomeric signals

Relative intensities of anomeric signals

H-3

H-3 ax and H-3 eq

N-Acetamido group

-CH₃ groups

Non sugar signals

5

Number of sugar residues + nature of some monosaccharides

Proton 1D

Proton 1D

Concept of structural reporter groups

A sugar is defined by the protons resonating at clearly distinguishable positions:

- Anomeric protons
- Mannose H-2 and H-3
- ➢ Sialic acid H-3
- \blacktriangleright Deoxyhexose H-5 and CH₃
- Galactose H-3 and H-4
- Amino sugars

Each signal is influenced by its environment in a specific manner that can be defined

Influences on reporter were established owing to the availibility of sugars of increasing complexities

It is possible to predict the structure of a sugar from a **limited set** of signals

- Vliegenthart JFG et al. (1983) High-resolution, ¹H-nuclear magnetic resonance spectroscopy as a tool in the structural analysis of carbohydrates related to glycoproteins
- Kamerling et al. (1992) High-Resolution ¹H-Nuclear Magnetic Resonance Spectroscopy of Oligosaccharide-Alditols Released from Mucin-Type O-Glycoproteins

Proton 1D

Concept of structural reporter groups

			_ ∽−ol	🍫	⊢ol			—ol		
		◇ –ol	Core 1	Co	Core 2		Core 4		Core 5	Core 6
GalNAc-ol	H-2	4.252	4.395	4.395		4.287	4.280		4.395	4.242
	H-3	3.850	4.065	4.0	4.061		3.984		3.888	3.841
	H-4	3.390	3.507	3.468		3.546	3.519		3.680	3.379
	H-5	3.928	4.196	4.2	4.281		4.230		3.749	4.021
	H-6	3.668	3.69	3.9	3.931		3.905		3.647	3.933
	H-6'	3.647	3.628	n	n.d.		n.d.		3.647	n.d.
	NAc	2.055	2.050	2.066		2.037	2.044		2.049	2.046
Other residues			βGal	βGal	βGlcNAc (6)	βGlcNAc	βGlcNAc (3)	βGlcNAc (6)	βGalNAc	βGlcNAc
	H-1	-	4.478	4.468	4.538	4.604	4.600	4.543	5.103	4.553
	H-2	-	3.564	3.542	n.d.	n.d.	n.d.	n.d.	4.235	n.d.
	H-3	-	3.671	n.d.	n.d.	3.584	n.d.	n.d.	3.921	n.d.
	H-4	-	3.901	3.901	n.d.	n.d.	n.d.	n.d.	4.043	n.d.
	H-5	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	4.073	n.d.
	H-6	-	n.d.	n.d.	3.932	3.950	3.949	3.931	n.d.	3.928
	Н-б'	-	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
	NAc	-	-	-	2.066	2.085	2.081	2.063	2.060	2.059

Proton 1D

Proton 1D SOACS index

Sum of Anomeric Chemical Shifts

Re	eference iumber	So	cheme		SOA In	CS-ol dex		LINUC	6 ID	Reference number		Scheme	S	OACS-ol Index	LINUCS IE
	44					33,627		1667		65	0	*** **	–ol	41,915	12180
	45				-ol 32,109 23,272 23,018 28,308 33,102 -ol 32,777 38,142		5009 8948 4288 8949 8952 8954		66				19,592	639	
	48			67					:			24,139	1674		
	49								68				28,629	1675	
	50								69	¢			28,504	1673	
	53								70	Ø			33,876	12558	
	54								71			:	39,222		
	55						8953		72	72		:	24,026	1676	
	56						12363		73				43,519	1679	
	45								_		50				
	40							6	ļ		45				
	35						\$		1		40				
dex	30					6	8	~			35				
⊆ n	25					ě	~	\$	\$		25				
ÄÇ	20			~	š	ě	Ŷ				20		_	_	
SOS	20		~	8	ě						15				
	15		ĕ	0							10	10			
	10	Ŷ	÷.							5	5				
	5.0	Ŷ							-		0	0			
	o 🕈					T					0	\$ 0° 1	8. B.	° P	レイ
	2	3	4	5	6	7	8	9	10		00.1	\$0,0°	st s		

Maes et al., (2009) Carbohydr Res. 344(3): 322-30.

F2

Proton 2D

SOACS index

COSYR1

COSYR2

Mixing time 40 ms

Mixing time

Mixing time

1_{ppm} 33.4 33.6 ¢ () 33.8 0 () () () 4 111.01 44.0 0 44.2 0 44.4 11 () u H 44.6 (44.8 . **a** (t) ŧ 5.0 \$5.2 . 11 M 55.4 5.4 5.2 5.0

4.8

4.6

4.4

4.2

4.0

3.8

3.6

ppm

ROESY : Rotating Overhauser Effect SpectroscopY (MW<2kDa) **NOESY** : Nuclear Overhauser Effect SpectroscopY (MW>2kDa)

B linked to A in 2 position

NOESY

NOESY + TOCSY

Direct heteronuclear correlation ${}^{1}J_{H,c} \sim 145 \text{ Hz}$

1H-13C HMQC-TOCSY

Direct heteronuclear correlation correlated with associated spin systems (¹H-¹³C and ¹³C-¹H)

HMQC : Heteronuclear Multi Quanta Coherence
HSQC : Heteronuclear Simple Quantum Coherence
HMQC-TOCSY : Heteronuclear Multi Quantum
Coherence-TOtal Correlation spectroscopY
HMBC :Heteronuclear Multiple Bound Coherence

licinal heteronuclear correlation ³J_{H,c} ~ 7 Hz

¹H-³¹P HMQC

Direct heteronuclear correlation ${}^{3}J_{HP} \sim 7 Hz$

Chemical shifts of heteroatoms

Direct ${}^{1}J_{H,X}$ coupling constants

۶ 🔶

Substitution and sequence

What use of NMR for glycobiology?

- de novo sequencing
- Glycomics profiling
- Surface analysis: HR-MAS NMR
- DOSY NMR
- Protein-carbohydrate interaction

What use of NMR for glycobiology?

> De novo sequencing

De novo sequencing

Establish the **exact sequence** of:

- A pure oligosaccharide (dp<15)</p>
- > A simple mixture of small oligosaccharides (dp<8)
- > A pure polysaccharide with limited heterogeneity
- > A simple mixture of homogeneous polysaccharides

Will provide **all possible structural parameters** of the molecules:

- Composition
- Sequence
- Anomery
- Substitutions
- ≻ …/…

Establishment of:

¹H δ of anomers and GalNAc-ol

> ${}^{3}J_{1H,H2}$ > ${}^{3}J$ of GalNAc-ol

COSY 90

Establishment of: > H1-H2 correlations > H2 δ > ${}^{3}J_{\text{H2,H3}}$

COSY RI

Establishment of:

- > H1-H3 correlations through H2
- > H3 δ

> ³J_{H3,H4}

COSY R2

Establishment of: ➤ H1-H4 correlations through H2

≽ H4 δ

➢ ³J_{H4,H5}

Establishment of:

- H-C correlations
- ≻ C δ
- > Positions of substitutions ($\Delta\delta$ ¹³C > + 4-5Hz)

Establishment of:

- Dipolar couplings
- Sequence

What use of NMR for glycobiology?

Glycomics profiling

Glycomics analysis

Establish the **glycan profile** of:

- > A complexe mixture of oligosaccharides
- > A pure polysaccharide with high heterogeneity
- > A complexe mixture of polysaccharides

Will provide **limited set** of relevant parameters

- Composition
- Partial sequence
- Anomeric ratios
- Presence of motifs

E. Maes

)-(

Glycomics profile

	Assignments of signals (ppm) ^a					Estimated abundance									
						Ileum		Cecum		Transverse		Sigmoid		Rectum	
	H3eq	H3ax `			D1	D2	D1	D2	D1	D2	D1	D2	D1	D2	
α2-3 linked NeuAc	2.75-2.78	1.79-1.81		normaniar - Anna - Canada - Anna - Canada - Anna - Canada - Canada - Canada - Canada - Canada - Canada - Canada Canada - Canada - Canad Canada - Canada - Can	±	+	+	+	++	++	++	++	+++	++	
α2-3 linked NeuAc in Sda/Cad	2.63-2.67	1.91-1.93				-	+	-	+	-	++	-	++	±	
α2-6 linkedNeuAc	2.72-2.75	1.68-1.71			++	++	++	++	++	++	++	++	+++	+++	
	H1	H2	Н3	H4											
O-3 Sialylated Gal	4.53-4.59	3.5-3.6	4.08-4.13	3.92-3.95	±	-	+	-	++	+	++	+	+++	++	
O-3 Sulfated Gal	4.56-4.61	3.7-3.8	4.31-4.33	4.26-4.28	-	-	+	+	++	++	++	++	+++	++	
	H6	H6'													
O-6 Sulfated GlcNAc	4.4-4.3	4.3-4.2			-	-	-	-	-	±	-	+	±	+	
	H1	H2	Н5	H6											
α 1-2 linked Fuc in H group ^b	5.15-5.35	3.76-3.84	4.26-4.32	1.18-1.29	++	++	+	+	±	-	-	-	-	-	
α1-2 linked Fuc in Le ^b group	5.27-5.29	3.72-3.82	4.34-4.39	1.28-1.29	++	++	+	+	±	-	-	-	-	-	
α 1-3 linked Fuc in Le ^x group	5.11-5.15	3.69-3.71	4.81-4.82	1.13-1.19	+	+	++	+	++	++	+++	++	+++	++	
α1-4 linked Fuc in Le ^a group	5.01-5.06	3.80-3.81	4.82-4.86	1.15-1.20	-	-	+	+	++	++	+++	++	+++	++	
α1-4 linked Fuc in Le ^b group	5.02-5.04	3.81	4.86-4.87	1.27	++	++	+	+	-	-	_	-	-	-	
	H1	H2	H3	H4											
α1-3 linked GalNAc core 5	5.06-5.07	4.22	3.92	4.04	+	+	+	+	+	+	+	+	+	+	
GalNAc in A group	5.18-5.23	4.24	3.90-3.93	4,0	+	+	+	+	-	-	-	-	-	-	
GalNAc in A Le ^b group	5.23-5.27	4.17-4.18	3.97	3.97	+	+	Ŧ	-	-	-	-	-	-	-	

What use of NMR for glycobiology?

Surface analysis: HR-MAS NMR

High-Resolution at Magic Angle NMR What does it do?

Acquires NMR spectra of intact cells

- No purification needed
- > NMR signal is proportional to quantity AND mobility of molecules
- Holistic vision of cell surface
- Observe mobile components, potentially present at the surface of cells

Ideally suited for the study of surface glycocalix

How does it work?

How to fill the rotor?

You need 12 to 200 μL of cell paste

Hanoulle et al. BBRC 2005

How to acquire the data?

- Load into HR-MAS probe
- ➤ Tilt to 54,74° magic angle
- Rotate to 8000rd/s
- Acquire data with any NMR pulse

Ainsworth et al., mBio 2014

VVV

Identification of external free-moving layer

Identification of internal condensed layer

)-(

Structural analysis of internal condensed layer

Polysaccharides shuffling

Applications

- Bacterial surface polysaccharides
- Bacterial glycolipids
- Bacterial lipids
- Bacterial metabolites
- Fungus polysaccharides and glycoproteins
- Many others to try and lot's of fun.../...

Usage

- Screen mutants/culture conditions
- Discover molecules
- Follow metabolism
- Check the in vivo structure

What use of NMR for glycobiology?

DOSY

Diffusion-ordered spectroscopy (DOSY)

- separate the NMR signals of different species according to their diffusion coefficient.
- resolve mixtures of molecules with differing sizes
- referred as 'NMR size exclusion chromatography'

DOSY

DOSY

Viel et al. Biomacromol. 2013

DOSY exemples of applications

Depolymerization monitoring

What use of NMR for glycobiology?

Protein-carbohydrate interaction

Protein interaction by IH-I5N NMR

Grondin et al. JMB 2014

)--(

Saturation transfer difference (STD) NMR

Used for studying **protein–ligand** interactions in solution.

- Identify the binding glycan bound to its receptor protein
- Ligand protons in close contact receive higher saturation, which results in stronger STD NMR signals.
- The STD NMR is easy to implement
- > Only small amounts of native protein are required.

Mayer, M., Meyer, B. (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. *Angewandte Chemie, International Edition*, 38, 1784–1788

STD NMR

Mayer & Meyer JACS 2011

Grondin *et al.* JMB 2014

Interaction between Slex and virus particles

Fiege et al. JACS 2012

47337384844444448

Relative STD Effect (%)

0

οн

4

IC 50 = 10 µM

OMe

NHAc

OMe

Cui et al., CR 2014

Acknowledgement

THERMN

E. Maes

NMR Expert Carbohydrates

X. Trivelli

NMR Expert Small molecules Proteins