FOGUSOHSTRUCTURAL BIOLOGY

Series Editor ROB KAPTEIN

Fundamentals of Protein NMR Spectroscopy

by
Gordon S. Rule and T. Kevin Hitchens

1	
$\mathrm{P}_{\mathrm{o}}=1 \mathrm{I}_{2} \rightarrow$	$\xrightarrow{\sim} \mathrm{l}_{2} \xrightarrow{*} \mathrm{~S}\left(\mathrm{t}_{1}, \mathrm{~h}_{2}\right)$

Springer

Focus on Structural Biology

> Structure
> Dynamics
> Interactions

NMR method -------
Time scale
Molecular motion --

Figure 1.2. Characterization of molecular dynamics with NMR. The time scale of motions in proteins are indicated below the axis and NMR techniques that can be used to characterize motion on the various time scales are shown above the axis.

1.1 Introduction to NMR Spectroscopy

In this chapter we will employ a semi-classical model of the nuclear spins to obtain an intuitive understanding of many of the fundamental aspects of modern NMR spectroscopy. This treatment will highlight a number of important features of NMR spectroscopy, including:

1. How energy states are created by the magnetic field,
2. How resonance signals are detected,
3. How the detected signals are transformed into spectra,
4. How the relaxation properties of the excited state are affected by the environment,
5. How the relaxation properties affect the NMR lineshape,
6. How the absorption frequency of a nuclear spin is affected by its environment,
7. How the characteristic NMR absorption frequencies of amino acids are interpreted.

1.2 One Dimensional NMR Spectroscopy

1.2.1 Classical Description of NMR Spectroscopy
1.2.2.1 Magnetic Dipole

Magnetic moment of a nuclear spin: $\vec{\mu}_{n}=\gamma_{n} \hbar \vec{I} \quad$ (Erg/Gauss)
y : Nuclear gyric ratio (Gyromagnetic ratio) (Hz/gauss)
\hbar : Plank's constant (Erg/Hz); I: Spin quantum number (unitless)
Y and I are intrinsic properties of a nucleus

Table of Isotopes and NMR Parameters

Isotope		Observation Frequency			Natural Abundance	Spin（I）	Relative Sensitivity	Isotope	Observation Frequency			Natural Abundance	Spin（ I）	Relative Sensitivity
		GX270	GX400	GX500					GX270	GX400	GX500			
考	1H	270.166	399.782	500.125	99.985	$1 / 2$	1．00	105 Pd	12.371	18.306	22.901	22.23	-5.2	1.12×10^{-3}
	2 D	41.472	61.369	76.773	1.5×10^{-2}	1	9.65×10^{-3}	107 Ag	10.934	16.179	20.240	51.82	－1／2	6.62×10^{-5}
	37	288.168	426.420	533.449		1.2	1.21	109 Ag	12.568	18.598	23.266	48.18	$-1 / 2$	$1.01 \times 10^{-}$
	61.	39.758	58．832	73.598	7.42	1	8.50×10^{-8}	111 Cd	57.286	84.770	106.047	12.75	-12	9.54×10^{-3}
3＊	7 Li	105.014	155.396	194．400	92.58	32	0.293	\％ 113 Cd	59.926	88.676	110.933	12.26	-12	1.09×10^{-2}
	9 Be	37.962	56.175	70.275	100	$-3 / 2$	1.39×10^{-2}	1131 n	59.069	87.408	109.347	4.28	92	0.345
	10 B	29.032	42.960	53.743	19.58	3	1.99×10^{-2}	115 In	59.204	87.608	109.597	95.72	92	0.342
激	11 B	86.677	128.262	160.455	80.42	$3 / 2$	0.165	115 Sn	88.342	130.725	163.536	0.35	－1／2	3.50×10^{-2}
3\％	13 C	67.938	100.533	125.766	1.108	1.2	1.59×10^{-2}	117 Sn	96.249	142.426	178.175	7.61	－1 2	4.52×10^{-2}
蔀	14 N	19.519	28.884	36， 134	99.63	1	1.01×10^{-3}	＊ 1119 Sn	100.682	148.985	186.380	8.58	－1 2	5.18×10^{-2}
榞	15 N	27.379 36.634	40．514	50．683	0.37×10^{-2}	-1.2	1.04×10^{-3}	121 Sb	64.653	95．672	119.685	57.25	52	0.160
䦽	170 19%	36.634 254.191	54.210 376.142	67.817 470.552	3．7 ${ }^{3} \times 10^{-2}$	－5 2	2.91×10^{-2}	123 Sb	98.467	145.708	182.281	42.75	72	4.57×10^{-2}
竟	19 F 23 Na	254.191 71.458	376.142 105.742	470.552 132.282	100	12	0．833	123 Te	70.812	104．785	131.086	0.87	-12	$\text { 1. } 80 \times 10^{-2}$
306	23 Na 25 Mg	71.458 16.538	105.742 24.472	132.282 30.615	100 -10.13	3.2	9.25×10^{-2} 2.67×10^{-3}	125 Te	85.348	126． 295	157.994	6.99	－1 2	3.15×10^{-2}
\％	27 Al	70．396	104．169	130．315	${ }_{100}^{-10.13}$		2.67×10^{-3} 0.206	36． 1271	54.062 74.731	79.999 110.5848	100.078	100	52	9.34×10^{-2}
\％	29Si	53.674	79.426	99.361	4.70	－1 2	7.84×10^{-2}	＊ 129 Xe	74.731 35.443	110.584 52.448	138.340 65.612	${ }^{26.44}$		2.12×10^{-2} 4.74×10^{-2}
\％	31 P	109.381	161.858	202.483	100	1 2	6.63×10^{-2}	135 Ba	26.838	39.714	49.682	6.59	32	4.90×10^{-3}
家	33 S	21.039	31.133	38.948	0.76	32	2.26×10^{-3}	137 Ba	30.024	44.428	55.579	11.32	3.2	6.86×10^{-3}
\＄6\％	35 Cl	26.471	39.170	49.002	75.53	3.2	4.70×10^{-3}	1391a	38.164	56.473	70.648	99.911	7.2	5.92×10^{-2}
	37 Cl	22.032	32.602	40.785	24.47	3.2	2.71×10^{-3}	141 Pr	79．459	117.581	147.094	100	52	0.293
	39 K	12.606	18.654	23.336	93.10	3.2	5.08×10^{-4}	143 Nd	14.689	21.736	27.192	12.17	-72	3.38×10^{-3}
	41 K	6.919	10.238	12.808	6.88	32	8.40×10^{-5}	145 Nd	9.024	13.353	16.704	8.3	$-7 / 2$	7.86×10^{-4}
38	43 Ca	17.911	26.504	33． 156	0.145	-72	6.40×10^{-3}	147 Sm	11.158	16.511	20.655	14.97	$-7 / 2$	1.48×10^{-3}
	45 Sc	65.631	97.119	121.495	100	72	0.301	1495 m	8.890	13.156	16.457	13.83	－7 2	7.47×10^{-4}
	47 Ti	15.229	22.536	28.192	7.28	-52	2.09×10^{-3}	151 Eu	66.990	99.130	124.011	47.82	5.2	0.178
	49 Ti	15.232	22.540	28.197	5.51	-72	3.76×10^{-3}	153 Eu	29.589	43.784	54.774	52.18	52	1.53×10^{-2}
	50 V	26.936	39.858	49.862	0.24	6	5.55×10^{-2}	155 Gd	10.253	15.172	18.980	14.73	－32	2.79×10^{-4}
	51 V	71.008	105.075	131．448	99.76	7 2	0.383	159 Tb	61.315	90.731	113.504	100	32	5.83×10^{-2}
	53 Cr	15.270	22.596	28．267	9.55	-32	9.03×10^{-4}	161 Dy	8.904	13.175	16.482	18.88	-5.2	4.17×10^{-4}
	$55 \mathrm{Mn}$	66.634	98.602	123．351	100	5.2	0.175	163 Dy	12.681	18.765	23.475	24.97	5.2	1.12×10^{-3}
	57 Fe	8.729	12.917	16.159	2.19	1.2	3.37×10^{-5}	165 Ho	55.379	81.948	102.516	100	72	0.181
36	59 Co	64.106	94.862	118.672	100	72	0.277	167 Er	7.825	11.578	14.485	22.94	－72	5.07×10^{-1}
	61 Ni	24.142	35．724	44.691	1.19	-32	3.57×10^{-3}	169 Tm	22.327	33.039	41.331	100	－1 2	5.66×10^{-4}
湤	63 Cu	71.607	105.961	132.557	69.09	3.2	9.31×10^{-2}	171 Yb	47.584	70.414	88.087	14.31	1.2	5.46×10^{-3}
	$65 \mathrm{Cu}$	76.711	113.514	142.005	30.91	32	0.114	173 Yb	13.108	19.397	24.266	16.13	-52	1.33×10^{-3}
	$67 \mathrm{Zn}$	16.899	25.006	31．283	4.11	5.2	2.85×10^{-3}	1751	30.826	45.615	57.064	97.41	72	3.12×10^{-2}
	69 Ga	64.840 82.387	95.948 121.914	120.030	60.4	$\begin{array}{ll}3 & 2 \\ 3\end{array}$	6.91×10^{-2}	177 Hf	8.375	12.393	15.504	18.5	72	6.38×10^{-4}
＊	71 Ga 73Ge	82.387 9.423	121.914 13.944	152.514 17.444	39.6 7.76	$3 / 2$ -92	0．142 ${ }^{1.40 \times 10^{-3}}$	179Hf	5．126	7.586	9．490	13.75	-92	2.16×10^{-4}
＊	73 Ge 75 As	9.423 46.281	13.944 68.484	17.444 85.673	7.76 100	-92 3	1.40×10^{-3} 2.51×10^{-2}	181 Ta	32.337	47.851	59.861	99.988	72	3.60×10^{-2}
＊	77 Se	51． 525 1	68.484 76.245	85.673 95.382	100 7.58	3.2 1	2.51×10^{-2} 6.93×10^{-3}	183W	11.242 60.825	16.635	20．810	14.40	$\begin{array}{ll}1 & 2 \\ 5 & 2\end{array}$	7.20×10^{-5}
	79 Br	67.687	100.161	125.301	50.54	3.2	$7.86 \times 10^{-2}=$	185 Re 187 Re	60.825 61.449	90.007 90.930	112.598 113.753	37.07 62.93	5.2	0.133 0.137
\％	81 Br	72.980	107.993	135.099	49.46	32	9.85×10^{-2}	1870s	6.222	9.207	11.518	62.93 1． 64	12	1.22×10^{-5}
	83 Kr	10.393	15．380	19.240	11．55	-9.2	1.88×10^{-3}	1890 s	21.051	31.151	38.970	16.1	3.2	2.34×10^{-7}
	85 Rb	26.085	38.599	48．287	72.15	5.2	1.05×10^{-2}	1911 r	2.644	6.872	8.597	37.3	32	2.53×10^{-5}
3）	87 Rb	88.403	130.815	163.649	27.85	3.2	0.175	1931r	5.055	7．480	9.357	62.7	32	3.27×10^{-5}
	87 Sr	11.706	17.323	21.670	7.02	-92	2.69×10^{-3}	$3{ }^{2} 195 \mathrm{Pt}$	58.077	85.941	107.511	33.8	1 2	9.94×10^{-3}
	$89 \mathrm{Y}$	13．235	19.585	24.501	100	－12	1.18×10^{-7}	197 Au	4.625	6.844	8.562	100	32	2.51×10^{-5}
	91 Zr 93 Nb	25.206 66.036	37．300	46．662	11.23	-5 9	9.48×10^{-3}	3 199 Hg	48.308	71.484	89.426	16.84	12	5.67×10^{-3}
38	93 Nb	66.036	97.717 26.046	122.244 32.583	100	92	0． 482	201 Hg	17．831	26.386	33.008	13.22	-32	1.44×10^{-3}
	95 Mo 97 Mo	17.061 17.971	26.046 26.593	32.583 33.268	15.72 9.46	5 -5	3.23×10^{-3} 3.43×10^{-3}	20377	154．400	228.475	285.821	29.50	12	0.187
	97 Mo 99 Ru	17.971 9.133	26.593 13.515	33.268 16.907	9.46 12.72	-5.2 -3.2	3.43×10^{-3} 1.95×10^{-4}	20577 $\% 207 \mathrm{~Pb}$	155.910 56.534	230.710 83.657	288.617 104.655	70.50 22.6	1.2	0.192 $9.16 \times$
	101 Ru	13.241	19.594	24.511	17.07	-5.2	1.41×10^{-3}	209Bi	43.416	64.245	80.370	100		$9.16 \times$ 0.137
	103 Rh	8.505	12.585	15.744	100	$-1 / 2$	3.11×10^{-5}	235 U	4.863	7.196	9.002	10.7205	7 7	1.21×10^{-4}

＊Isotopes whose observation frequencies are stored on GX standard software．

For biological systems we deal almost exclusively with ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}$ and ${ }^{31} \mathrm{P}$. With the exception of 2 H they are all spin $\frac{1}{2}$ nuclei.
Table 1.1. Properties of NMR active nuclei.

Nuclei 1	$\gamma\left(\mathrm{rad} \times \mathrm{sec}^{-1} \times \text { gauss }^{-1}\right)^{\dagger}$	I	Natural Abundance $(\%)$
${ }^{1} \mathrm{H}$	26,753	$1 / 2$	99.980
${ }^{2} \mathrm{H}$	4,106	1	0.016
${ }^{19} \mathrm{~F}$	25,179	$1 / 2$	100.000^{2}
${ }^{13} \mathrm{C}$	6,728	$1 / 2$	1.108^{3}
${ }^{15} \mathrm{~N}$	$-2,712$	$1 / 2$	0.37^{3}
${ }^{31} \mathrm{P}$	10,841	$1 / 2$	100.00

${ }^{1}$ The term "Protons" is used interchangeably with ${ }^{1} \mathrm{H}$ in the text.
${ }^{2}$ Fluorine is not normally found in biopolymers, therefore it has to be introduced by chemical or biosynthetic labeling.
${ }^{3}$ These isotopes of carbon and nitrogen are normally found in low levels in biopolymers, therefore the levels of these two spins are generally enriched, often to 100%, by biosynthetic labeling.
${ }^{\dagger}$ CGS units are used throughout the text.

AT 71000 GAUSS (7.1 TELSLA)

1.2.2.2 Nuclear Dipole-Magnetic Field Interaction

A

B

Figure 1.3. Orientation of magnetic dipoles.
A. Orientation of nuclear magnetic dipoles in the absence of a magnetic field. A unit sphere is shown and the dots on the surface illustrate the various orientations of the dipoles in space. The orientation of one dipole μ is indicated by a line drawn from the center of the sphere.
B. The orientation of the nuclear spin dipoles in a static magnetic field along the z-axis. Note that approximately one-half of the spins are pointed up and the other half are pointed down. Also note that they can assume any value of ϕ, but only two values of $\theta . \phi$ and θ represent the orientation of the magnetic dipole in spherical coordinates, as shown on the right part of this figure.

Energy of a spin in a magnetic field of strength B :

$$
\mathbf{E}=-\vec{\mu} \cdot \vec{B} \quad B=(1-\sigma) B_{o}
$$

Where σ represents the degree of shielding due to surrounding electrons. Σ is in the order of 10^{-6} and will be ignored for the time being.

The Zeeman Hamiltonian: $\mathcal{H}=-u_{z} B_{z}=-\gamma \hbar B m_{z} \quad$ for $\quad \mu_{z}=\gamma \hbar m_{z}$

$$
\begin{gathered}
\mathrm{m}_{\mathbf{z}}=-\mathrm{I},-\mathrm{I}+1, \ldots \mathrm{I}-1, \mathbf{I} \quad E_{\alpha}=-\frac{\gamma \hbar B}{2} \quad E_{\beta}=+\frac{\gamma \hbar B}{2} \\
\Delta E=E_{\beta}-E_{\alpha}=\gamma \hbar B \quad E=\hbar \omega \\
\omega_{s}=\gamma B \quad \text { Larmor equation }
\end{gathered}
$$

> Resonance frequency depends on:
(i) The type of nucleus, y , and (ii) External field strength, B.

1. The population difference between the two energy levels is very small, on the order of 1 part in 10^{6}. The actual population difference can be easily calculated from Boltzmann's relationship:

$$
\begin{equation*}
\frac{N_{\beta}}{N_{\alpha}}=e^{\frac{-\gamma \hbar B}{k T}} \approx 1-\frac{\gamma \hbar B}{k T} \tag{1.10}
\end{equation*}
$$

$>$ The higher the resonance frequency the more sensitive it is.
2. The lifetime of the excited state can be quite long, on the order of msec to sec. As discussed above, a long lifetime provides three benefits: narrow resonance lines, experimental manipulation of the excited state in multi-dimensional experiments, and sensitivity to molecular motion over a wide time scale.

1.3 Detection of Nuclear Spin Transitions

-The presence of static field caused the spins to occupy different energy states
$>$ To detect the magnetization one need to apply a RF field of frequency equal to the Larmor frequency in the orthogonal direction to the static field.

Two ways of detecting the magnetization:

1. Continuous wave method: Swapping the static or RF field so that the Larmor condition is met to observe absorption of RF field.
\rightarrow Slow and not versatile.
2. Pulsed Fourier Transform NMR:
\rightarrow Fast ($x 100$) and more versatile.

Steps involved in a simple one pulse expt:

1. Preparation: Allow spin to reach thermal equilibrium.
2. Excitation: Apply B1 field at defined frequency and time duration.
3. Detection: B1 off and receiver on. The signal (Free induction decay, FID) is digitized and Fourier transformed to obatain spectrum.

1.3.2.1 Before the Pulse: Magnetization at Equilibrium

The torque on the magnetization subjecting to a magnetic field B is given by:

$$
\begin{equation*}
\Gamma=\frac{d S}{d t}=\vec{\mu} \times \vec{B} \quad \text { Using } \vec{\mu}=\gamma \vec{S} \text { we can write } \quad \frac{d \mu}{d t}=\gamma \vec{\mu} \times \vec{B} \tag{1.12}
\end{equation*}
$$

Rotating frame: The change in magnetization as observed in a frame rotating a frequence Ω is given by:

$$
\begin{equation*}
\frac{\delta \vec{\mu}}{\delta t}=\gamma \vec{\mu} \times\left(\vec{B}+\frac{\Omega}{\gamma}\right)=\gamma \mu \times B_{e f f} \tag{1.14}
\end{equation*}
$$

Where $\mathrm{B}_{\text {eff }}=\left(\vec{B}+\frac{\Omega}{\gamma}\right)$ is the effective field in the Z-direction.
\rightarrow In the rotating frame equatin 1.14 has the same form as (1.12) provide B is replaced by $B_{\text {eff }}$.
\rightarrow The additional field Ω / γ is a fictitious field.
$\rightarrow \delta \mu / \delta t=0$ if $\mathrm{B}_{\text {eff }}=0$ or $\Omega=-\gamma B$
\rightarrow In this frame the magnetization appears as stationary (i.e. no change)
\rightarrow In a frame rotating at the Larmor frequency the magnetization appears as stationary (No oscillation).
The bulk (macroscopic magnetization:

$$
M_{i}=\sum_{i=1}^{\text {All spins }} \mu_{i}
$$

At thermal equilibrium the components in the three axes are:

$$
M_{z}=M_{o} \quad M_{x}=M_{y}=0
$$

Figure 1.7. Rotating frame of reference. The coordinate system is rotating at a frequency $|\Omega|$ about the z-axis.

1.3.2.2 Effect of the B_{1} Pulse: Excitation of Nuclear Spins

If we apply a RF field $\overrightarrow{B_{1}}=\left|b_{1}\right| \cos (\omega t) \hat{j}$ in the v-direction.
Then the effective in the rotation frame : $\quad \vec{B}_{\text {rot }}=\left[\left(B+\frac{\Omega}{\gamma}\right) \hat{k}+B_{1} \hat{j}\right]$

$$
\frac{\delta \mu}{\delta t}=\gamma \mu \times\left[\left(B+\frac{\Omega}{\gamma}\right) \hat{k}+B_{1} \hat{j}\right]
$$

Let: $\quad \Omega=-\omega ; \gamma B=\omega_{s} ; \omega_{1}=\gamma B_{1}$, then
Then:

$$
\frac{\delta \mu}{\delta t}=\gamma \mu \times\left[\left(\frac{\omega_{s}-\omega}{\gamma}\right) \hat{k}+\frac{\omega_{1}}{\gamma} \hat{j}\right]
$$

Where ω_{s} is the resonance frequency of the nucleus, w is the frequency of the applied RF field and ω_{1} is proportional to B 1 field strength.
$\rightarrow B$ and w differ only by a factor y and they can be considered as the same quantities.
\rightarrow There are two fields, one in the Z-direction and is given by the static field and the opposing fictitious field and another one in the $B 1$ direction (X or Y depending on the operator).

For the case $\omega_{s}=\omega$ (on resonance) we have: $\frac{\delta \vec{\mu}}{\delta t}=\gamma \mu \times \frac{\omega_{1}}{\gamma} \hat{j}$
For the macroscopic magnetization: $\quad \frac{\delta \vec{M}}{\delta t}=-\omega_{1} \hat{i}$

$\rightarrow M$ is tipped away from the z-axis at a rate of $\omega_{1} \mathrm{rad} / \mathrm{sec}$.
\rightarrow The angle it tips: $\beta=\omega_{1} \tau$ where τ is the duration of the RF pulse.

Define $P_{\beta}^{\vec{u}}$ as a pulse in the \vec{u} that flips the magnetization by β degree.
So P_{45}^{y} is a 45 y-pulse. If $\beta=90$ it is called a 90° or $\pi / 2$ pulse or a π-pulse if If $\beta=180^{\circ}$.
After a $P_{\beta} y$ pulse the magnetization has the following components:

$$
M_{z}=M_{o} \cos (\beta) \quad M_{x}=M_{o} \sin (\beta) \quad M_{y}=0
$$

This transformation is often abbreviated as:

$$
M_{z} \xrightarrow{P_{\beta}^{y}} M_{z} \cos (\beta)+M_{x} \sin (\beta)
$$

$A \pi / 2$ pulse generates the maximum amountof magnetization in the $x-y$ plane (maximum signal, transverse magnetization) while a π-pulse generates a $-M$ magnetization and is called an inversion pulse.
\rightarrow The distribution of magnetization after a $\pi / 2$ pulse is called a coherent state.
\rightarrow After a $\mathrm{P}_{\beta^{-y}}$ pulse we have: $\quad M_{z}=M_{o} \cos (\beta) \quad M_{x}=-M_{o} \sin (\beta)$
\rightarrow A $P_{\beta} \times$ pulse will produce: $M_{z}=M_{0} \cos (\beta) ; \quad M_{x}=0$ and $M_{y}=-M_{0} \sin (\beta)$
\rightarrow After a $P_{\pi / 2}{ }^{y}$ pulse: $M_{z}=0 ; M_{x}=M_{0}$ and $M_{y}=0 \rightarrow$ Magnetization on x-y plane.

1.3.2.3 Detection of Resonance

After the \mathbf{B}_{1} pulse is turned off, the transverse magnetization precesses in the $x-y$ plane around the B_{o} field, just as it did before the pulse. The key difference is that the transverse magnetization is now coherent and gives rise to a non-zero magnetic moment in the $x-y$ plane.

The precession of the coherent magnetization in the $x-y$ plane induces a time dependent current in the receiver coil. This signal is called the free induction decay (FID) and represents bulk magnetization that exists in the $x-y$ plane. The frequency of the induced signal is exactly equal to the resonance frequency of the nuclear spin transition since the magnetization precesses around \mathbf{B}_{o} at $\omega_{s}=\gamma B$.

Detection of the precessing magnetization is accomplished by analog circuits that actually measure the magnetization in the rotating frame, i.e. the observed frequency, ω^{\prime}, is $\omega_{s}-\omega$, where ω_{s} is the precessional frequency of the spin and ω is the rate of rotation of the coordinate frame, or equivalently, the frequency of the applied B_{1} pulse

Quadrature detection (Detect the signal in both X - and Y-direction): Signal at time t after the B1 pulse ends: $\left(\omega^{\prime}=\omega_{s}-\omega\right)$

$$
M_{x}(t)=M_{o} \cos \left(\omega^{\prime} t\right) e^{-t / T_{2}} \quad M_{y}(t)=M_{o} \sin \left(\omega^{\prime} t\right) e^{-t / T_{2}}
$$

$\omega^{\prime}=\omega_{s}-\omega$ is the rotating frame resonance frequency
ω_{s} : The freq of RF pulse, i.e. coordinate rotating frequency.
ω : The actual resonance frequency in laboratory frame
These two signals are usually combined into a single complex number:

$$
S(t)=M_{x}(t)+i M_{y}(t)=M_{o} e^{i \omega^{\prime} t} e^{-t / T_{2}}
$$

Figure 1.11. Fourier transform of the time domain signal. The free induction decay after the 90° pulse is shown. The upper section of the figure shows the precession of the transverse (i.e. $x-y$) magnetization after the pulse. The lower part of the figure shows the FID with the points indicating the data sampled during digitization, representing a dwell time of 1 msec . The subsequent resonance line obtained after Fourier transformation is shown to the right. In this case the pulse is slightly off-resonance and precesses in the rotating frame. The upper scale for the abscissa of the spectra gives frequencies in the rotating frame, the lower scale gives frequencies in the laboratory frame.

Question: What are the FT of $M_{x}, M_{y}, S(t)$ and $e^{-t / T 2}$?
FT of $e^{-t / T 2}$ is: $\quad F(\omega)=\frac{T_{2}}{1+T_{2}^{2} \omega^{2}} \quad$ Lorentzian lineshape
This lineshape is shown in Fig. 1.12. The full width of the line at half-height, $\Delta \nu$, is inversely proportional to the $\mathrm{T}_{2}: \Delta \nu=1 /\left(\pi T_{2}\right)$.

$\mathrm{FT}\left(\mathrm{e}^{\mathrm{i} \omega \mathrm{t}}\right)=\delta(\omega)(\mathrm{A}$ delta function at $\omega) \quad \mathrm{FT}\left(\mathrm{e}^{-\mathrm{t} / \mathrm{T} 2}\right)=\frac{T_{2}}{1+T_{2}^{2} \omega^{2}}$
$\mathrm{FT}\left[\mathrm{e}^{-\mathrm{i} \omega \mathrm{t}} \cdot \mathrm{e}^{-\mathrm{t} / \mathrm{T} 2}\right]=\delta(\omega) \otimes \frac{T_{2}}{1+T_{2}^{2} \omega^{2}}$

1.4 Phenomenological Description of Relaxation

First order relaxation process: $\quad I(t)=I_{o} e^{-t / T}=I_{o} e^{-R t}$ T is the relaxation time (sec) and R is the relaxation rate

Frequency [rad/sec] (sec^{-1}) and $\mathrm{R}=1 / \mathrm{T}$.
T_{1} : Spin-lattice (Longitudinal) relaxation (Relaxation in Z-direction) (Energy dissipation).
T_{2} : Spin-spin (Transverse) relaxation (relaxation on $x-y$ plane)
(Dephasing or lost of coherent).

Magnetic Dipoles

Z-Magnetization

Factors affecting T_{2} :

1. Field inhomogeneity: Cause spins at different location to resonate at different frequency.
2. Dipolar coupling between adjacent spins (spin-spin coupling). Causes splitting.
3. Chemical shield anisotropy (CSA) due to anisotropic distribution of electrons around the nucleus.
Thus,

$$
R_{2}^{*}=\frac{1}{T_{2}^{*}}=R_{2}^{\Delta B}+R_{2}^{D D}+R_{2}^{C S A}
$$

In cases where $R_{2}{ }^{\Delta B}$ can be ignored: $\quad \frac{1}{T_{2}}=R_{2}=R_{2}^{D D}+R_{2}^{C S A}$

1.4.1 Relaxation and the Evolution of Magnetization

$$
\frac{d \vec{M}}{d t}=\gamma \vec{M} \times B
$$

The decay of magnetization: (Phenomenological description) The decay terms are added to account for relaxation.

$$
\left.\begin{array}{rl}
\frac{d M_{z}}{d t} & =\frac{M_{o}-M_{z}}{T_{1}}+\gamma(M \times B)_{z} \\
\frac{d M_{x}}{d t} & =\frac{-M_{x}}{T_{2}}+\gamma(M \times B)_{x} \\
\frac{d M_{y}}{d t} & =\frac{-M_{y}}{T_{2}}+\gamma(M \times B)_{y}
\end{array}\right\} \text { (Bloch equations) }
$$

In the rotating frame:

$$
\begin{aligned}
& \frac{\delta M_{z}}{\delta t}=\frac{M_{o}-M_{z}}{T_{1}} \\
& \frac{\delta M_{x}}{\delta t}=\frac{-M_{x}}{T_{2}}+M_{y}\left(\omega_{s}-\omega\right) \quad \text { where } \omega_{s}=\gamma B, \omega=-\Omega . \\
& \frac{\delta M_{y}}{\delta t}=\frac{-M_{y}}{T_{2}}-M_{x}\left(\omega_{s}-\omega\right)
\end{aligned}
$$

Let $\quad M^{+}=M_{x}+i M_{y}$ then

$$
\begin{equation*}
\frac{\delta M^{+}}{\delta t}=-M^{+}\left[\frac{1}{T_{2}}+i \omega^{\prime}\right] \tag{1.42}
\end{equation*}
$$

The solution to eq. (1.42) is:

$$
\begin{equation*}
M^{+}=e^{-i \omega^{\prime} t} e^{-t / T_{2}} \tag{1.43}
\end{equation*}
$$

The magnetization after a $P_{90} \times$ pulse we have the intitial conditions: $M_{x}=M_{z}=0$ and

$$
\begin{aligned}
& M_{x}(t)=\sin \left(\omega^{\prime} t\right) e^{-t / T_{2}} \\
& M_{y}(t)=\cos \left(\omega^{\prime} t\right) e^{-t / T_{2}} \\
& M_{z}(t)=M_{o}\left[1-e^{-t / T_{1}}\right]
\end{aligned}
$$

In quadrature detection the signal: $S(t)=\begin{aligned} & \text { Real } \quad M_{x}(t)+i M_{y}(t)= \\ & =\end{aligned} M_{o} e^{i \omega^{\prime} t} e^{-t / T_{2}}$

1.5 Chemical Shielding $\quad B=(1-\sigma) \cdot B_{o}$

Lamb formula: For isotropic electron distribution: σ is call chemical shift.
For an anisotropic distribution σ is a tensorial quantity: $\quad \sigma=\left[\begin{array}{ccc}\sigma_{x x} & 0 & 0 \\ 0 & \sigma_{y y} & 0 \\ 0 & 0 & \sigma_{z z}\end{array}\right]$
In solid the resonance frequency of a spin depends on its orientation w.r.t. the magnetic field and equals $\sigma_{x x}$ if along the x-direction and $\sigma_{y y}$ if along y-direct and $\sigma z z$ is along the Z-direction.
In solution, it averages to a scale quantity:

$$
\bar{\sigma}=\frac{1}{3}\left[\sigma_{x x}+\sigma_{y y}+\sigma_{z z}\right]
$$

σ is proportional to B but if we define $\delta=\frac{\nu-\nu_{o}}{\nu_{o}} \times 10^{6}$ then the chemical shift will be independent of the field the spectrum is taken. Here U_{0} is the frequency of the RF pulse and u is the resonance frequency of the spin. σ has the unit of ppm (part per million). This makes it possible to directly compare the position of resonance lines in spectra obtained at different field.
Example: If a spin resonates at 2 ppm then this spin will resonate at 600 Hz away from the reference frequency at a 300 MHz spectrometer (i.e. ${ }^{1} \mathrm{H}$ spin resonates at $\sim 300 \mathrm{MHz}$). This spin will resonate at 1800 Hz away from the reference if the spectrum is taken at 900 MHz spectrometer.
In NMR spectroscopy, this standard is often tetramethylsilane, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$, abbreviated TMS, or 2,2-dimethyl-2-silapentane-5-sulfonate, DSS, in biomolecular NMR. For ${ }^{1} \mathrm{H}$ the chemical shift of a functional group is usually scattered around a defined region given below:

Deshielded (low field)	Acids Aldehydes		Alcohols, protons α Aromatics to ketones					Shielded (up field)
					Aliphatic			
	1	-	,	,	1			
	15	10	7	5	2	0	ppm	
100 MHz	1500	1000	700	500	200	0	(Hz)	
300 MHz :	4500	3000	2100	1500	600	0	(Hz)	
500 MHz :	7500	5000	3500	2500	1000	0	(Hz)	

Chemical Shift Referencing：The ${ }^{1} \mathrm{H}$ chemical shift was referenced to 2，2－dimethyl－2－ Silapentane－5－sulfonate（DSS）at 0 ppm ．The ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ chemical shift values were referenced using the consensus ratio of $三$ of 0.101329118 and 0.251449530 for ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} /{ }^{1} \mathrm{H}$ ，respectively
（Wishart and Case，Method．Enzymol．338，3－34（2001））

TABLE 1

IUPAC／IUBMB Recommended Ξ（XI）Ratios for Indirect
Chemical Shift Referencing in Biomolecular NMR ${ }^{a}$

Nucleus	Compound	Ξ Ratio
${ }^{1} \mathrm{H}$	DSS	1.000000000
${ }^{13} \mathrm{C}$	DSS	0.251449530
${ }^{15} \mathrm{~N}$	Liquid NH 33	
${ }^{19} \mathrm{~F}$	$\mathrm{CF}_{3} \mathrm{COOH}$	0.101329118
${ }^{31} \mathrm{P}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PO}_{4}$	0.940867196

${ }^{a}$ Relative to DSS．
三 ratio（Nucleus－specific frequency ratio：Determine the precise ${ }^{1} \mathrm{H}$ resonance frequency of DSS then multiply this frequency by 三 of a particular nucleus one obtains the exact resonance frequency reference at 0 ppm of that nucleus．

Structures of Four Building Blocks ：

 Type III Amino Acids 胺基酸胺基酸為生物蛋白質的基本組成單位。雖然蛋白質所含的胺基酸數目十分龐大，但是這些蛋白質胺基酸多半是由同様的二十種不同的胺基酸所重複排列組合而成。這些胺基酸的共同結構如下（R為Remainder，代表該分子其他剩餘的部分）

胺基酸的通式結構

胺基酸的極性結構（zwitterionic form通常發生於生理狀態 pH 值時）

這常見於細胞中二十種不同的胺基酸的分類可依其分支分子（R部分）的極性來劃分。其中非極性分支端的胺基酸有九種，其分支端的大小與幾何形狀各異。

Glycine	COO^{-}
Gly	$\mathrm{H}-\mathrm{C}-\mathrm{H}$
G	
Alanine	COO^{-}
Ala	$\mathrm{H}-\mathrm{C}-\mathrm{CH}_{3}$
A	NH_{3}^{+}
Valine	$\mathrm{COO}^{-} \mathrm{CH}_{3}$
Val	C
v	
Leucine	$\mathrm{COO}^{-} \quad \mathrm{CH}_{3}$
Leu	
L	
Isoleucine	$\mathrm{COO}^{-} \mathrm{CH}_{3}$
Ile	$\mathrm{H}-\mathrm{C}-\mathrm{C}^{*}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
I	

十一種極性分支端的胺基酸，又可分為六種為带電極性分支端胶基酸與五種可能带電極性分支端变基酸。

Table 1.2. Proton chemical shifts. The average proton chemical shifts in proteins are shown. These data were obtained from BioMagResBank [52].

Residue	$N H$	H_{α}	H_{β}	Others
Gly	8.34	3.94		
Ala	8.20	4.26	1.38	
Val	8.29	4.16	1.99	$0.84,0.83(\mathrm{CH} 3)$
Ile	8.26	4.20	1.80	$1.30,1.24(\mathrm{CH} 2), 0.80(\gamma \mathrm{CH} 3), 0.70(\delta \mathrm{CH} 3)$
Leu	8.22	4.32	$1.63,1.57$	$1.54(\gamma \mathrm{CH}), 0.77,0.76(\delta \mathrm{CH} 3)$
Pro	-	4.41	$2.05,2.05$	$1.93(\gamma \mathrm{CH} 2), 3.64,3.63(\delta \mathrm{CH} 2)$
Ser	8.29	4.51	3.88	$5.33 \mathrm{H} \gamma(\mathrm{OH})$
Thr	8.27	4.48	4.17	$1.16(\gamma \mathrm{CH} 3), 4.40 \mathrm{H} \gamma 1(\mathrm{OH})$
Asp	8.33	4.61	$2.74,2.70$	
Glu	8.34	4.26	2.04	$2.31(\gamma \mathrm{CH} 2)$
Lys	8.22	4.28	$1.79,1.78$	$1.38(\gamma \mathrm{CH} 2), 1.61(\delta \mathrm{CH} 2), 2.93(\epsilon \mathrm{CH} 2), 7.52(\zeta \mathrm{NH} 3)$
Arg	8.24	4.27	1.79	$1.58(\gamma \mathrm{CH} 2), 3.13(\delta \mathrm{CH} 2), 7.32,6.74,6.72(\mathrm{NH})$
Asn	8.37	4.70	$2.80,2.78$	$7.27,7.20(\delta \mathrm{NH} 2)$
Gln	8.22	4.28	$2.05,2.04$	$2.32(\gamma \mathrm{CH} 2), 7.17,7.07(\gamma \mathrm{NH} 2)$
Met	8.26	4.39	$2.03,2.01$	$2.44(\gamma \mathrm{CH} 2), 1.86(\epsilon \mathrm{CH} 3)$
Cys	8.42	4.73	$2.95,2.98$	$1.66-\mathrm{SH}$
Trp	8.35	4.74	$3.32,3.18$	$6.68-7.17(\operatorname{aromatic}), 10.13(\mathrm{NH})$
Phe	8.42	4.62	$2.97,2.99$	$6.89-6.91(\operatorname{aromatic})$
Tyr	8.37	4.63	1.91	$6.86(\mathrm{H} \delta), 6.64(\mathrm{H} \epsilon), 9.25(-\mathrm{OH})$
His	8.25	4.62	$3.11,3.12$	$\mathrm{H} \delta 110.14(\mathrm{NH}), \mathrm{H} \delta 27.08, \mathrm{H} \epsilon 18.08, \mathrm{H} \epsilon 210.43(\mathrm{NH})$

Note that within a residue, the relationship between atom type and chemical shift is similar for both carbon and proton shifts. For example, in the case of arginine the following ordering is found for both carbon and proton shifts: $\alpha>\delta>\beta>\gamma$ (see

Table 1.3. Nitrogen chemical shifts. The nitrogen chemical shifts for side-chain atoms are shown. The amide nitrogen chemical shifts are $\approx 120 \mathrm{ppm}$, with the exception of glycine, which is found at 109.9 ppm. Data from BioMagResBank [52].

Residue	Shifts	Residue	Shifts
Arg	$89.8(\epsilon), 74.8 \mathrm{NH} 1,75.8 \mathrm{NH} 2$	His	$190.7(\delta 1), 179.8(\epsilon 2)$
Asn	$112.8(\delta)$	Lys	$71.86(\zeta)$
Gln	$111.8(\epsilon)$	Trp	$129.5(\epsilon)$

Table 1.4. Carbon chemical shifts. The average carbon chemical shifts were obtained from the BioMagResBank [52]. Carbonyl shifts have been omitted from this table since they are quite uniform at approximately 175 ppm .

Residue	C_{α}	C_{β}	Others
Gly	45.3		
Ala	53.1	18.9	
Val	62.5	32.6	$21.3(\mathrm{CH} 3)$
Ile	61.6	38.6	$27.6(\gamma 1), 17.3(\gamma \mathrm{CH} 3), 13.4(\delta \mathrm{CH} 3)$
Leu	55.7	42.3	$26.8(\gamma), 24.5(\delta \mathrm{CH} 3)$
Pro	63.3	31.8	$27.1(\gamma), 50.3(\delta)$
Ser	58.6	63.8	
Thr	62.1	69.6	$21.4(\gamma \mathrm{CH} 3)$
Asp	54.5	40.7	$178.41(\gamma)$ sidechain
Glu	57.4	30.0	$36.0(\gamma), 181.9(\delta)$ sidechain
Lys	56.8	32.8	$24.9(\gamma), 28.8(\delta), 40(\epsilon)$
Arg	56.9	30.7	$27.3(\gamma), 43.1(\delta), 159.0(\zeta)$
Asn	54.5	40.7	$178.41(\gamma)$ sidechain
Gln	56.6	29.1	$33.7(\gamma), 179.7(\delta)$ sidechain
Met	56.1	32.9	$32.1(\gamma), 17.2(\epsilon \mathrm{CH} 3)$
Cys	57.4	34.1	$110-137($ aromatic $)$
Trp	57.7	30.1	$129-138($ aromatic $)$
Phe	58.2	40.0	$117(\epsilon \mathrm{C}), 132(\delta \mathrm{C}), 156(\zeta)$
Tyr	58.0	39.1	$119.8(\delta 2), 136(\epsilon 1)$
His	56.4	30.0	

Figure 1.16. Distribution of carbon and proton chemical shifts. The distribution of observed carbon (A, left) and proton (B, right) chemical shifts in proteins. The solid circles (.) mark the average chemical shift. The solid lines indicate $\pm 3 \sigma$; 95% of the observed chemical shifts fall within this range. The gray boxes indicate nominal chemical shift ranges for a, β, and methy/ atoms. In the case of carbon shifts, these ranges separate the atom types quite well. Note that there are a few exceptions, for example, the β carbons of Ser and Thr fall in the aregion and the a-carbon of Gly can fall in the β-carbon region. The large range of β-carbon shifts for Cys is due to the fact that both free and disulfide bonded residues are included in this figure. In the case of proton shifts, the separation by atom type is not as clean due to the extensive chemical shift overlap between the various atom types. Data from the BioMagResBank database of chemical shifts [52].

Nitrogen (400 ppm) and carbon (200 ppm) have much larger range of chemical shifts.
In addition to the chemical bonding effect chemical shift is also affected by many external factors, such as: (1) Secondary structure; (2) Hydrogen bonds; (3) Charge near the spin. Positive charge withdraw electrons from the spin and causes de-shielding (Larger chemical shift) and positive charge has the opposite effect. (4) Ring current shift ; (5)Electron spins (paramagnetic shift) etc.

1.6.2 Ring Current Effects

Aromatic groups have delocalized electrons that circulating around the ring and behaves like a coil to generate magnetic fields which affect the chemical shift of adjacent spins.

The dipolar field is given by:

$$
\sigma=i B \frac{1-3 \cos ^{2} \theta}{r^{3}}
$$

Figure 1.15 Ring current shifts. Calculated ring current shifts for a phenylalanine ring. The x-axis lies in the plane of the ring and the y-axis is perpendicular to the plane of the ring. The location of the carbon and its attached hydrogen are indicated by the large and small spheres, respectively. The large gray area represents the approximate Van der Waals radius of the phenyl group. The lines represent contours of iso-chemical shift changes.

1.6.3.1 Degeneracy and Equivalent Chemical shifts

1.6.4 Use of Chemical Shifts in Resonance Assignments
1.6.5 Chemical Shift Dispersion \& Multi-dimensional NMR: Resolving the complex spectrum.

1.7. Exercises

