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Figure 1.2.  Characterization of molecular dynamics with NMR. The time scale of motions
in proteins are indicated below the axis and NMR techniques that can be used to characterize
motion on the various time scales are shown above the axis.



1.1 Introduction to NMR Spectroscopy

In this chapter we will employ a semi-classical model of the nuclear spins to ob-
tain an intuitive understanding of many of the fundamental aspects of modern NMR
spectroscopy. This treatment will highlight a number of important features of NMR
spectroscopy, including:

. How energy states are created by the magnetic field,

]

How resonance signals are detected,

d

How the detected signals are transformed into spectra,

How the relaxation properties of the excited state are affected by the environment,

ook

How the relaxation properties affect the NMR lineshape,
6. How the absorption frequency of a nuclear spin is affected by its environment,

7. How the characteristic NMR absorption frequencies of amino acids are interpreted.

1.2 One Dimensional NMR Spectroscopy

1.2.1  Classical Description of NMR Spectroscopy
1.2.2.1 Magnetic Dipole

Magnetic moment of a nuclear spin: /i, = 7p, nl  (Erg/Gauss)

Y : Nuclear gyric ratio (6yromagnetic ratio) (Hz/gauss)
i : Plank's constant (Erg/Hz); I: Spin quantum number (unitless)



vy and I are intrinsic properties of a nucleus
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For biological systems we deal almost exclusively with H, 2H, 13C, °N and 3!P. With the
exception of 2H they are all spin 7 nuclei.
Table 1.1. Properties of NMR active nuclei.

Nucleit ~ (rad x sec 1 x gauss_Iﬁ I/ Natural Abundance (%)
'H 26.753 1/2 09.98()
H 4,106 | 0.016
19F 25.179 1/2 100.000?
3¢ 6.728 1/2 1.108°
15N 2712 1/2 0.373
3lp 10,841 1/2 100.00

1The term “Protons” is used interchangeably with 'H in the text.

2Fluor

ine i1s not normally found in biopolymers, therefore it has to be introduced by

chemical or biosynthetic labeling.
3These isotopes of carbon and nitrogen are normally found in low levels in biopoly-
mers, therefore the levels of these two spins are generally enriched, often to 100%, by

biosynthetic labeling.

TCGS

units are used througchout the text.

AT 71000 GAUSS (7.1 TELSL.A)

(IT = 10,000G)

Wo(MH2z) 0 30 75 121 280 300 320

tr |

Nucleus SN e 3p Pr  1H ‘H




1.2.2.2  Nuclear Dipole-Magnetic Field Interaction
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Figure 1.3. Orientation of magnetic dipoles.

A. Orientation of nuclear magnetic dipoles in the absence of a magnetic field. A unit sphere 1s
shown and the dots on the surface illustrate the various orientations of the dipoles in space. The
orientation of one dipole w 1s indicated by a line drawn from the center of the sphere.

B. The orientation of the nuclear spin dipoles in a static magnetic field along the z-axis. Note
that approximately one-half of the spins are pointed up and the other half are pointed down.
Also note that they can assume any value of ¢, but only two values of 6. ¢ and 6 represent the
orientation of the magnetic dipole in spherical coordinates, as shown on the right part of this
figure.

Energy of a spin in a magnetic field of strength B:

—

E = —/i B B=(1-0)B,
Where o represents the degree of shielding due to surrounding electrons.
> is in the order of 10-¢ and will be ignored for the time being.



The Zeeman Hamiltonian: H = —u.B.

~hB ~hB
f Es =+ f

m,=-I, -I+1, .I-1, T Lo=-— 3 E

m;
AE = E{;} — EQ = ,-}hB E = hw 0 / |

ws =B Larmor equation

> Resonance frequency depends on:
(i) The type of nucleus, v, and (ii) External field strength, B.

The population difference between the two energy levels 1s very small, on the order

of 1 part in 10°. The actual population difference can be easily calculated from
Boltzmann’s relationship:

l.

Ng —yhB ~vhB
-~ — e kT == ]

— - (1.10)
» The higher the resonance frequency the more sensitive it is.

2. The lifetime of the excited state can be quite long, on the order of msec to sec. As
discussed above, a long lifetime provides three benefits: narrow resonance lines,
experimental manipulation of the excited state in multi-dimensional experiments,
and sensitivity to molecular motion over a wide time scale.

—~yhBm, for [tz = Yhm.



1.3  Detection of Nuclear Spin Transitions side View

] —

> The presence of static field caused the spins to Bo e
occupy different energy states rop View
> To detect the maghetization one need to apply a RF &8s =
field of frequency equal to the Larmor frequency in == | | @
the orthogonal direction to the static field. : \/
LRV
. y Eé(lrlntahon/reoewe
Two ways of detecting the magnetization: Helmhotz coil
1. Continuous wave method: Swapping the static or RF
field so that the Larmor condition is met to observe
absorption of RF field. Radio-frequency pulse
: Signal (FID)
> Slow and not versatile. \ | /
2. Pulsed Fourier Transform NMR: 'ﬁ'

m
|

|I‘H|‘|A||M'|ﬂ|al\

= Fast (x100) and more versatile.

HHM'V n‘|‘|‘||"u,'w'u ‘m'

Steps involved in a simple one pulse expt: T'me -

1. Preparation: Allow spin to reach thermal equilibrium.

2. Excitation: Apply Bl field at defined frequency and time duration.

3. Detection: Bl off and receiver on. The signal (Free induction decay, FID)
is digitized and Fourier transformed to obatain spectrum.




1.3.2.1 Before the Pulse: Magnetization at Equilibrium

The torque on the magnetization subjecting fo a magnetic field B is given by:

Y . _ d . _
= 5 =jix B Using i = ~S we can write . v x B (1.12)
dt dt
Rotating frame: The change in magnetization as .
observed in a frame rotating a frequence (1 is given .
by: 7
g L= 9
OB = gix(B+=) =vuxBy  (114)
ot Y
- Q. . . . . .
Where B¢ = (B+ —) is the effective field in the Z-direction. .. .~
i N
= In the rotating frame equatin 1.14 has the same X

form as (1.12) provide B is replaced by B,.
> The additional field /7 is a fictitious field.

-
-~

Figure 1.7. Rotating frame of
reference. The coordinate sys-

- (')'U/(ﬁ — (0 if Beﬁc =Qor = — 7B tem is rotating at a frequency | 2|

= In this frame the magnhetization appears as about the z-axis.
stationary (i.e. no change)
=> In a frame rotating at the Larmor frequency the

magnetization appears as stationary (No oscillation).

All spins

The bulk (macroscopic magnetization: M — Z 1

=1
At thermal equilibrium the components in the three axes are:
M » = M o M r — M y 0



1.3.2.2  Effect of the B; Pulse: Excitation of Nuclear Spins

If we apply a RF field By = |bi|cos(wt)] in the v-direction.

Then the effective in the rotation frame: B, = {(B + 9)k + Byj
"\Ir
Ot Q. . A
. VL X [(B + — )k + Blj]
ot ~
Let: ) = —w; vB = w; wy = By, then
5 J ( S‘ — ( o~ ( /\'
Then: é—f =YX {(W' k + ﬂj]

Where w; is the resonance frequency of the nucleus, w is the frequency of the
applied RF field and w; is proportional to Bl field strength.

=> B and w differ only by a factor y and they can be considered as z
the same quantities. —
=> There are two fields, one in the Z-direction and is given by the Q/y
static field and the opposing fictitious field and another one in
the Bl direction (X or Y depending on the operator).

O W1 ~
For the case w, = w (on resonance) we have: h—‘: =y x =1

~/

— /
oM .
;)‘t - e g

> M is tipped away from the z-axis at a rate of w, rad/sec.
> The angle it tips: 8 = wiT where ris the duration of the RF pulse.

For the macroscopic magnetization:




Define Pf as a pulse in the ¢; that flips the magnetization by p degree.
So Pis is a 45 y-pulse. If p = 90 it is called a 90° or

Magnetic Dipoles

m /2 pulse or a m-pulse if If p = 180e. N .
After a Py pulse the magnetization has the ; y N
following components: x 8

M. = M, cos(3) M, = M, sin(}3) M, =0 Homon e ,

This transformation is often abbreviated as:
P _ R B
M, — M_,cos(3) + M,sin(j3) )

y

A /2 pulse generates the maximum amountof magnetization in the x-y plane (maximum

signal, fransverse magnetization) while a m-pulse generates a -M magnetization and is

called an inversion pulse.

=> The distribution of magnetization after a m /2 pulse is called a coherent state.
> After a P,7 pulse we have: )7, = 0, cos(3) M, = —M,sin(8)

> A Py* pulse will produce: M, = M, cos(p). M, =0 and M, = - M;sin(p)

> After a P, pulse: M,=0; M,=M, and M, =0 - Magnetization on x-y plane.

1.3.2.3  Detection of Resonance

After the B4 pulse is turned off, the transverse magnetization precesses in the x-y
plane around the B, field. just as it did before the pulse. The key difference is that
the transverse magnetization is now coherent and gives rise to a non-zero magnetic
moment in the x-y plane.

The precession of the coherent magnetization in the x-y plane induces a time de-
pendent current in the receiver coil. This signal is called the free induction decay
(FID) and represents bulk magnetization that exists in the -y plane. The frequency
of the induced signal 1s exactly equal to the resonance frequency of the nuclear spin
transition since the magnetization precesses around B, at ws = v B.



Detection of the precessing magnetization is accomplished by analog circuits that

actually measure the magnetization{in the rotating] frame, i.e. the observed frequency.
W', 18 ws — w, where wy is the precessional frequency of the spin and w is the rate

of rotation of the coordinate frame, or equivalently, the frequency of the applied B

pulse.

a (w’ =0, On resonance)
Envelope is given by e1/T2

o
1
'S
AN
2
/
.\

600 -300 0 300 600 Frequency (Hz)

Amplitude

\{ (W = 650 Ha)
ol = 150 Question: What will it looks like if w = - 150 Hz ?

L]
0 10 20 30 40 50
Time [msec]

Quadrature detection (Detect the signal in both X- and Y-direction):
Signal at time 1 after the Bl pulse ends: (w' = w, - w)

My (t) = Mocos(w't)e™ /™ M, (t) = M,sin(w't)e” /T2

w' = w, - w is the rotating frame resonance frequency
w, : The freq of RF pulse, i.e. coordinate rotating frequency.

w : The actual resonance frequency in laboratory frame

These two signals are usually combined into a single complex number:

S(t) — Afl(t) + &ﬂ[y (f) = ﬂ.»foeiwfte_tzjb
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Figure 1.11. Fourier transform of the time domain signal. The free induction decay after the
90° pulse is shown. The upper section of the figure shows the precession of the transverse
(i.e. x-y) magnetization after the pulse. The lower part of the figure shows the FID with the
points indicating the data sampled during digitization, representing a dwell time of 1 msec. The
subsequent resonance line obtained after Fourier transformation is shown to the right. In this
case the pulse is slightly off-resonance and precesses in the rotating frame. The upper scale

for the abscissa of the spectra gives frequencies in the rotating frame, the lower scale gives
frequencies in the laboratory frame.

Question: What are the FT of M,, M, S(1) and e*#/72? ]

Ty
FTof et/T2is: L'(w) = 1+ 72,2  Lorentzian lineshape ‘: AV

This lineshape is shown in Fig. 1.12. The full width of the line at half-height, Av, is o

inversely proportional to the To: Av = 1/(715). T r—

Frequency [rad/sec]



. T
FT(e®) = 8(w) (A deltafunctionatw) — FT(e¥?)= o3
T
FT[eiet - et/12] = §(w) ® ﬁ
1.4  Phenomenological Description of Relaxation

First order relaxation process: I(t)=IT,e VT = [, Bt
T is the relaxation time (sec) and R is the relaxation rate
(sec)and R=1/T.

Frequency [rad/sec]

T, Spin-lattice (Longitudinal) relaxation (Relaxation in Z-direction) (Energy dissipation).

T,: Spin-spin (Transverse) relaxation (relaxation on x-y plane)
(Dephasing or lost of coherent).

Magnetic Dipoles

PEPE Py Ny SEAN

Z-Magnetization

Observed Signal

Time



Factors affecting T,:

1. Field inhomogeneity: Cause spins at different location to resonate at different
frequency.

2. Dipolar coupling between adjacent spins (spin-spin coupling). Causes splitting.

3. Chemical shield anisotropy (CSA) due to anisotropic distribution of electrons around

the nucleus. 1 B bD . eed
Thus, R; = T = Ry™ + Ry~ + Ry™
2

) 1 )
In cases where R,2B can be ighored: T Ry = Ry" + R4
1.4.1 Relaxation and the Evolution of Magnetization

aMd
— = =7M x B
The decay of magnetization : dM. _ M, —M. . g
. . . * ! i z
(Phenomenological description) ¢ T
The decay terms are added to di‘éf = _;II + (M x B)g i
account for relaxation. ey iy (Bloch equations)
—Y — Y 4 (M x B)
dt Ts ' Y
In the rotating frame: SM,. M, — M,
5t Ty
O M — M, _
;, e ;2 + My (ws — w) where wy = 7B.w = —(L
oM, _ —M, Mo (wn — )

ot s



Let  M*=M,+iM, then MY _ e [i + z“’] (1.42)
The solution to eq. (1.42) is: MT =Wt emt/Ta (1.43)

The magnetization after a Pyy* pulse we have the intitial conditions: M, =M, =0
and -

M, IL) _ SlIl( ) —t/Ts e-1/T2 Z-Magnetization M (1-e-1/T1)

M, (t) = cos(u/t) et/ R TR m,

M, (t) = Mo[1 — e7¥/T1]

" T Time
Time [msec]
. . Real Imaginary

In quadrature detection the signal: S(t) = M, (t) + iM,(t) = Mye™ te=t/T2 (1.31)
1.5 Chemical Shielding B=(1-o0)-B,

2
€ T
Lamb formula: For isotropic electron distribution: 0 =g—3 / Pr(' )d?,
o is call chemical shift. mc 7

Opr 0O 0
For an anisotropic distribution o is a tensorial quantity: o = 0 oy O
0 0 o,

In solid the resonance frequency of a spin depends on its orientation w.r.t. the magnetic
field and equals o,, if along the x-direction and o, if along Y-direct and 0zz is along the
Z-direction.

In solution, it averages to a scale quantity: =3 02z + oyy + 024]



o is proportional to B but if we define d = x 10° then the chemical shift

Ve
will be independent of the field the spectrum is taken. Here v, is the
frequency of the RF pulse and v is the resonance frequency of the spin. o has
the unit of ppm (part per million). This makes it possible to directly compare
the position of resonance lines in spectra obtained at different field.

Example: If a spin resonates at 2 ppm then this spin will resonate at 600 Hz
away from the reference frequency at a 300 MHz spectrometer (i.e. !H spin
resonates at ~300 MHz). This spin will resonate at 1800 Hz away from the
reference if the spectrum is taken at 900 MHz spectrometer.

In NMR spectroscopy, this standard is of ten tetramethylsilane, Si(CH,),, abbreviated
TMS, or 2,2-dimethyl-2-silapentane-5-sulfonate, DSS, in biomolecular NMR.

For !H the chemical shift of a functional group is usually scattered around a defined
region given below:

Alcohols, protons a

Aromatics to ketones
< Acids Amides e Aliphatic >
Deshielded Aldehydes T T DSS Shielded
(low field) 1 T | | | L |17 (up field)

[ [ [ [ [ [

15 10 7 5 2 O ppm
100 MHz : 1500 1000 700 500 200 0 (H2)
300 MHz: 4500 3000 2100 1500 600 0 (Hz2)
500 MHz: 7500 5000 3500 2500 1000 0 (H2)



Chemical Shift Referencing: The !H chemical shift was referenced to 2,2-dimethyl-2-
Silapentane-5-sulfonate (DSS) at O ppm. The °N and 13C chemical shift values were
referenced using the consensus ratio of = of 0.101329118 and 0.251449530 for °N/H

and 13C/H, respectively
(Wishart and Case, Method. Enzymol. 338, 3-34 (2001))

TABLE 1
TUPAC/IUBMB RECOMMENDED & (XI) RATIOS FOR INDIRECT
CHEMICAL SHIFT REFERENCING IN BIOMOLECULAR NMR*?

Nucleus Compound & Ratio
'H DSS 1.000 000 000
Be DSS 0.251 449 530
BN Liquid NH4 0.101 329 118
19F CF;COOH 0.940 867 196
p (CH3);PO, 0.404 808 636

% Relative to DSS.

= ratio (Nucleus-specific frequency ratio: Determine the precise 'H
resonance frequency of DSS then multiply this frequency by = of a particular
nucleus one obtains the exact resonance frequency reference at O ppm of
that nucleus.



Structures of Four Building Blocks :
Type III Amino Acids B35
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Amino acids with uncharged polar side chains
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lable 1.2. Proton chemical shifts. The average proton chemical shifts in proteins are shown.
These data were obtained from BioMagResBank [52].

Residue NH  H, Hp Others

Gly 8.34 394

Ala 820 426 1.38

Val 829 4.16 199 0.84, 0.83(CH3)

Ile 8.26 420 1.80 1.30, 1.24 (CH2), 0.80 (vCH3), 0.70 (0CH3)
Leu 822 432 1.63,1.57 1.54(vCH),0.77,0.76(6CH3)

Pro - 441 205205 1.93(vCH2),3.64,3.63 (0CH2)

Ser 8.29 451 | 3.88 5.33 Hy (OH)

Thr 827 448 | 4.17 1.16 (vCH3), 4.40 H~1 (OH)

Asp 8.33 4.61 2.74.2.70

Glu 834 426 204 2.31 (vCH2)

Lys 822 428 1.79,1.78 1.38 (vCH2), 1.61 (6CH2), 2.93 (e¢CH2), 7.52 ((NH3)
Arg 824 427 1.79 1.58 (vCH2), 3.13 (6CH2), 7.32, 6.74, 6.72 (NH)
Asn 837 470 2.80,2.78 7.27,7.20 (6NH2)

Gln 822 428 205204 2.32(«CH2),7.17,7.07 (+vNH2)

Met 8.26 439 203201 2.44(«CH2), 1.86 (eCH3)

Cys 842 473 295298 1.66-SH

Trp 8.35 474 3.323.18 6.68-7.17 (aromatic), 10.13 (NH)

Phe 842 462 297299 6.89-6.9] (aromatic)

Tyr 8.37 4.63 191 6.86 (Ho). 6.64 (He). 9.25 (-OH)

His 825 462 3.11,3.12 HJl 10.14(NH), H62 7.08, Hel 8.08, He2 10.43(NH)

Note that within a residue, the relationship between atom type and chemical shift
1s similar for both carbon and proton shifts. For example, in the case of arginine the
following ordering is found for both carbon and proton shifts: o > 6 > 3 > ~ (see



Table 1.3. Nitrogen chemical shifts. The nitrogen chemical shifts for side-chain atoms are
shown. The amide nitrogen chemical shifts are ~ 120 ppm, with the exception of glycine, which
is found at 109.9 ppm. Data from BioMagResBank [52].

Residue Shifts Residue Shifts

Arg 89.8 (e), 74.8 NH1, 75.8 NH2 His 190.7 (61), 179.8 (€2)
Asn [12.8 (6) Lys 71.86 (¢)

Gln [11.8 (e) Trp 129.5 (¢)

Table 1.4. Carbon chemical shifts. The average carbon chemical shifts were obtained from
the BioMagResBank [52]. Carbonyl shifts have been omitted from this table since they are quite
uniform at approximately 175 ppm.

Residue C. Cg Others

Gly 45.3

Ala 53.1 L1891

Val 62.5 32.6 21.3 (CH3)

Ile 61.6 38.6 27.6 (1), 17.3 (n+CH3), 13.4 (6CH3)
Leu 55.7 42.3 26.8 (), 24.5 (6CH3)

Pro 63.3 31.8 27.1 (), 50.3 (4)

Ser 58.6 63.8

Thr 62.1 69.6 21.4 (v+CH3)

Asp 54.5 40.7 178.41 (~) sidechain

Glu 57.4 30.0 36.0 (), 181.9 (¥) sidechain
Lys 56.8 32.8 24.9 (7y), 28.8 (), 40 (e)
Arg 56.9 30.7 27.3 (), 43.1 (0), 159.0 ()
Asn 54.5 40.7 178.41 (=) sidechain

Giln 56.6 29.1 33.7 (). 179.7 () sidechain
Met 56.1 32.9 32.1 (), 17.2 (eCH3)

Cys 57.4 34.1

Trp 57.7 30.1 110-137 (aromatic)

Phe 58.2 40.0 129-138 (aromatic)

Tyr 58.0 39.1 117 (eC), 132 (6C), 156 (C)
His 56.4 30.0 119.8 (62), 136 (el)




Figure 1.16. Distribution of carbon
and proton chemical shifts. The
distribution of observed carbon (A,
left) and proton (B, right) chemical
shifts in proteins. The solid circles
(+) mark the average chemical shift.
The solid lines indicate #3g; 95% of
the observed chemical shifts fall
within this range. The gray boxes
indicate nominal chemical shift
ranges for a, B, and methy/atoms.
In the case of carbon shifts, these
ranges separate the atom types
quite well. Note that there are a
few exceptions, for example, the B-
carbons of Ser and Thr fall in the a-
region and the a-carbon of Gly can
fall in the B-carbon region. The large
range of B-carbon shifts for Cys is
due to the fact that both free and
disulfide bonded residues are
included in this figure. In the case
of proton shifts, the separation by
atom type is not as clean due to the
extensive chemical shift overlap
between the various atom types.
Data from the BioMagResBank
database of chemical shifts [52].
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Nitrogen (400 ppm) and carbon (200 ppm) have much larger range of chemical shifts.

In addition to the chemical bonding effect chemical shift is also affected by many
external factors, such as: (1) Secondary structure; (2) Hydrogen bonds; (3) Charge near

the spin. Positive charge withdraw electrons from the

spin and causes de-shielding

(Larger chemical shift) and positive charge has the opposite effect. (4) Ring current

shift ; (5)Electron spins (paramagnetic shift) etc.
1.6.2  Ring Current Effects

Aromatic groups have delocalized electrons that circulating around the ring and behaves
like a coil to generate magnetic fields which affect the chemical shift of adjacent spins.

The dipolar field is given by: ‘-
5 | .3
.1 —3cos?6 iz 48 00
o=1B 2 8 5 [ ¢
e 9 -2.0
i LN I
1 0.30 0.15
AN

o 1 2 3 4 5 6
Distance [A]

1.6.3.1 Degeneracy and Equivalent Chemical shifts

1.6.4  Use of Chemical Shifts in Resonance Assignments

1.6.5 Chemical Shift Dispersion & Multi-dimensional NMR

1.7. Exercises

Figure 1.15 Ring current shifts. Cal-
culated ring current shifts for a pheny-
lalanine ring. The z-axis lies in the
plane of the ring and the y-axis is per-
pendicular to the plane of the ring. The
location of the carbon and its attached
hydrogen are indicated by the large and
small spheres, respectively. The large
gray area represents the approximate
Van der Waals radius of the phenyl
group. The lines represent contours of
iso-chemical shift changes.

: Resolving the complex spectrum.



