Chapter 11 Coherence Editing: Pulse-field Gradients and Phase Cycling

Coherence editing is used to remove unwanted signals from NMR spectra. For example,
in the double quantum filtered COSY experiment, to suppress signals from uncoupled
protons, such as the intense solvent line, while retaining signals from coupled spins. This
filtering is accomplished by distinguishing between the different quantum states of the
magnetization during the experiment: uncoupled spins can only attain a single-quantum
state while coupled spins can be in a double-quantum state during the experiment.

Coherence editing is accomplished by encoding different states with a unique phase
during the pulse sequence. The selection of a desired state is attained by detecting only
those signals with the appropriate phase. The phase encoding of the signal can be
accomplished by either phase cycling of RF-pulses or by the application of short pulses of
spatially varying magnetic fields, otherwise known as pulsed-field gradients (PFG), during
evolution delays.

In the case of phase cycling, multiple scans are acquired with the phase of pulses and
the receiver altered in a systematic fashion such that the desired signals (e.g. double-
quantum) are always co-added while the undesired signals (e.g. single quantum states) add
to zero at the end of the phase cycle, as illustrated in Panel A of Fig. 11.1.

In the case of using pulsed-field gradients for coherence editing, a spatially varying
magnetic field is used to impart a characteristic phase shift on both the desired and
undesired signals. The amount of phase shift depends on the quantum level of the spins.
For example, the phase shift encoded in a single-quantum term would be half of that
encoded in a double-quantum term. The retention of the desired signal and discarding of
the undesired signal is simply accomplished by refocusing (returning the phase shift to
zero) the desired signal.



Both phase cycling and magnetic field gradients can effectively suppress undesirable
signals. Magnetic field gradients tend to be more effective than phase cycling methods
because they can be applied in a single scan, thus scan-to-scan reproducibility of the
instrument is not a critical factor.

In addition, suppression of strong solvent signals can also be accomplished within a single
scan, greatly reducing the dynamic range of the acquired signals, resulting in more
accurate conversion of the analog signal to digital form. In addition, the requirement of
acquiring multiple scans with phase cycling can lead to an undesirable increase in the

length of the experiment, especially in the case of three- or four-dimensional experiments.

There are two significant disadvantages associated with pulsed-field gradients. First,
additional delays have to be incorporated into the pulse sequence for the application of
gradients. In some cases this is not possible due to timing constraints. Second, there can
be an inherent reduction in sensitivity because the portion of the magnetization that is
rejected by the field gradients may contain useful signal. Consequently, most experiments
utilize a combination of pulsed-field gradients and phase cycling to remove undesirable
signals from the spectrum.
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Figure 11.1. Coherence editing in the DOQF-COSY experiment. Panel A illustrates coherence
editing by phase cycling while Panel B shows editing using pulsed magnetic field gradients.
In both cases, the signal associated with the double quantum (DQ) state is retained while that
from the single quantum state (SQ) is rejected. In the case of phase cycling (A), two scans are
acquired and summed. The phase of the signal associated with the DQ state differs from that of
the SQ such that when the signals are added, the DQ signals add while the SQ signals cancel. In
the case of coherence editing using pulsed-field gradients, the magnetization associated with the
DQ state receives a phase shift of ¢(z) due to the application of the first field gradient (G1). The
actual phase shift depends on the z-coordinate of the nuclear spin in the sample. In contrast,
the SQ state acquires a different phase shift (¢’(z)). A second gradient (G2) is designed to
reverse the phase shift associated with the DQ state, rendering it detectable. In contrast, the
magnetization associated with the SQ state is not refocused, such that the signal averaged over
the ensemble of spins is zero. Note that the coherence editing is accomplished within a single
scan.



11.1 Principals of Coherence Selection: 11.1.1 Spherical Basis Set

The product operator representation of the density matrix using Cartesian angular
momentum operators, such as I,, has proven to be very convenient for the analysis of the
effect of RF-pulses on the density matrix during an NMR experiment. However, the
Cartesian representation is cumbersome for analyzing the effect of phase cycling or field
gradients on the density matrix. Instead, we will adopt a different representation of the
density matrix in which the basis set will represent individual transitions, or coherences, of
the system. This basis set is often referred to as a spherical basis sef.

Table 11.1. Spherical and Cartesian Basis Sef. The relationship between the spherical and
Cartesian basis set is presented. The property of the system that is associated with each of the

spherical basis elements is also given.

Spherical  Cartesian Representation  Description

o’ !l Population difference P.-Pg
ot I +il, Upward transition &, — ®,
o ! L= Downward transition ®. — @,

For a single uncoupled spin the correspondence between the Cartesian and the
spherical basis set is shown in Table 11.1. The density matrix, o° represents the equi-
librium population difference between the ground and excited states and is referred
to as zero-quantum coherence. Single quantum coherences are represented by o1,
which represents systems in transition from the ground to the excited state, and o~ !,
which represents transitions from the excited to the ground state.

The fact that the spherical basis set represents transitions in a single direction can
be clearly seen from their corresponding density matrices:



h h
g“:—[ﬂ 1} g—lzalﬂ 0} (11.1)

210 0 1 0
while the Cartesian representation generally represent both upward and downward
transitions, for example:
h{0 1

The Cartesian representation of the density matrix can be converted to the spherical
representation using the following transformations:

1 _ 1 _
IIZE[GHJFG 1 fyzg[gﬂ_g 1 (11.3)

11.1.1.1  Selection of Double Quantum Coherence in DQF-COSY
Experiment

As an example of the selection of particular transition by phase cycling or pulsed-
field gradients, consider the magnetization present in the DQF-COSY experiment dur-

ing the delay A (See Fig. 9.10).
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where I represents o™ for the I-spins, etc.



The density matrices TS and [~ S5~ are non-zero for only elements that repre-
sent double quantum transitions while the matrices /7S~ and /=57 have only non-
zero elements that represent zero quantum transitions. Consequently, this Cartesian
form of the density matrix (2/;.5,) can be expressed using the spherical basis set as:

p=o0t2 4004 o2
Coherence selection, either by pulsed-field gradients or phase cycling of pulses, would
induce a phase shift in each of the separate coherences at this point in the experiment.
The phase encoding depends on the coherence level of each element of the density
matrix. After application of gradients, or phase alteration of the pulses, the above
density matrix would have the form:
o= ot2ei%2 4 500 L g—2p—iv

where 9 is the phase shift associated with the o+2 part of the density matrix. Note
that the shift associated with the o=2 term is exactly opposite to the phase shift of
ot2.

If a second phase shift of e~*2 is induced in the signal, by the application of a
gradient at some time later in the sequence, or by altering the receiver phase in the
case of phase cycling, then the density matrix will become:

p = e ¥ [ﬂwﬁwz +o%Y + J_Qe_i‘ﬁ’z] — o012 4 o0 72¢ 4 g2 202

[f we then assume that only signals with a phase shift of zero can be detected, then
the final density matrix consists only of signals that were in a double-quantum state
during the A period, all other signals will be absent from the spectrum.



The above example represents the general nature of coherence selection by phase
cycling or pulsed-field gradients. In both cases the elements of the density matrix are
encoded with a known phase shift, and this phase shift is exploited to reject all of the
undesirable signals.

11.1.2  Coherence Changes in NMR Experiments

Before coherence selection methods can be applied to an NMR experiment it is
necessary to know the coherences that are present during the experiment. Any NMR
experiment can be considered to be a series of pulses that bracket periods of free
evolution. Since periods of free evolution correspond to a rotation about the z-axis,
there is no change in the coherence level during those periods, the density matrix
simply develops a phase shift that is proportional to the frequency of the transition
that is represented by each element of the density matrix, e.g. 071 — oTle™®! [p
contrast, RF-pulses create new coherence levels in a system by virtue of the fact that
they cause transitions between spin states.

11.1.2.1 Example - Coherence Order in a COSY Experiment
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The 1nitial state of the system 1s:
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This density matrix is composed of an equal mixture of ™! and ¢! coherences for
both the I and S spins. During the t; evolution time the density matrix evolves under
both J-coupling and chemical shift evolution. At the end of t; the part of the density
matrix that will give rise to the crosspeak is:

pa = 21,5, sin(wrty)sin(wJty)

This 1s still a mixture of single quantum coherences, as indicated by the presence of
only one transverse operator (I,). Therefore. evolution of the system under either
the chemical shift or the J-coupling Hamiltonian does not change coherence order, as
discussed above.

The final pulse of the COSY experiment exchanges magnetization between the two

coupled spins: 21,S, — —2I.S,

The detected signal is obtained in the usual fashion, by taking the trace of the density
matrix and the operator that represents the observable. In the case of quadrature de-
tection the observable for the I spin is T = I, + il, (a similar expression could be
written for the S spins), giving the following signal:



M™(t) = M, (t) + iM,(t) = Trace [ p(I, + il,)] = Trace [ pI*]

Recall that: It

and [~ =

Therefore, the only density matrix that gives a non-zero trace when multiplied by I is
I~ . Consequently, the only coherence state that 1s detected with quadrature detection

is o1,

In summary, in the COSY experiment, the density matrix can be represented by
zero quantum coherence prior to the first pulse, as single quantum coherence during
t1. and the detected signal is proportional to the contribution of -1 coherence to the

density matrix.
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Figure 11.2 Coherence changes in the
COSY experiment. The desired coher-
ence changes in the COSY experiment
are summarized with a coherence level
diagram. The initial coherence level is
Zero (UD}, the first pulse generates both
o™ and o~ ! for both I and S spins.
The second mixing pulse interchanges
the label associated with each coher-
ence (e.g. J}’l — U}_l} and at the end
of the experiment, only o~ ! is detected
by quadrature detection.



11.1.3  Coherence Pathways

The coherence changes that occurred during the COSY experiment are neatly sum-
marized by a coherence pathway diagram, as shown in Fig. 11.2. The system begins in
a zero-quantum state, representing populations, is then transformed to single quantum
states by the first pulse, followed by detection of -1 single quantum coherence after
the second pulse. These transformations of the density matrix can also be represented
by the following sets of coherence paths:

JG%J+1(ﬁ1)%J_1 {J’D%{}'_l(ﬁl)%{}l’_l

The above coherence changes specify the desired changes in coherence during the
COSY experiment. There are other coherence paths that are also present. These paths
are undesired because they can lead to the presence of unwanted artifacts in the final
spectra. For example, if the first RE-pulse was not exactly equal to 90°, then the
first pulse will leave some magnetization along the z-axis, which 1s represented by
zero quantum coherence. Therefore, the following pathway is one of a number of
undesirable coherence pathways that can occur in the COSY experiment:

1 _
GD%UG%JD%G 1

Having defined the desired coherence changes in the COSY experiment, the following
sections will illustrate how pulsed-field gradients (Section 11.2) or RE-pulse phase
shifts (Section [1.3) can be used to select the desired coherence changes in an experi-
ment while rejecting the undesired ones.



11.2  Phase Encoding With Pulsed-Field Gradients
11.2.1  Gradient Coils

To employ pulsed-field gradients in coherence editing it is necessary to use spe-
cially designed probes and electronics. In the case of the probe, one (z-gradient) or
three (triple-axis: x, y. z-gradients) additional coils are placed next to the sample.
Each coil will generate a magnetic field gradient within the sample when current 1s
passed through the coil. The gradient coils are designed in such a manner that the
generated B, field depends on the position of the nuclear spin within the sample tube.
For example, a triple axis gradient would generate the following magnetic field at a

position (z, y, z) in the sample: B.=G. x 24+ Gz x x4+ Gy x y

where G; represents the gradient strength in the 7 direction, or the change in the mag-
netic field in the z-direction due to a change in the coordinate in the i'® dimension:
Gt' = 36‘1/'3%

The applied gradients can be either positive or negative, are of a well defined ampli-
tude, and can be activated for well defined periods of time using simple commands
within the NMR pulse program.
11.2.1.2  Effect of Position on Gradient Induced Phase Changes

During the application of a magnetic field gradient along the z-axis, the magnetic
field will become B, = B, + G - z. Therefore the precessional frequency of a spin
will become: w=w,+7vG, X z

If the field gradient is applied for a period 7. then the evolution of the density matrix
by the end of the gradient pulse is given by: p(T) = e iwTl: pE—I-t'w'sz

corresponding to a rotation about the z-axis by an angle wr.



Different molecules in the NMR tube will experience different field strengths dur-
ing the application of a magnetic field gradient because of their different locations
within the sample. The effect of a simple z-gradient on the phase of spins is shown in
Fig. 11.3. In this figure the nuclear spins labeled "E’ are at the center of the sample
and do not precess in the rotating frame. Spins that are spatially above E experience a
stronger magnetic field and therefore precesses more rapidly than the rotating frame,
moving in a counter-clockwise direction. As spins become more distant from E (e.g.
position H) the precessional rate increases because of the field gradient. In a similar
manner, spins that are below "E’ in the sample experience a weaker magnetic field and

Figure 11.3 Effect of magnetic field gradients on the
precessional rate of spins. This figure illustrates the ef-
fect of a field gradient along the z-axis. The top section
of the figure i1s a side view of the sample and the bottom
section provides a top view of the sample. The mag-
netization was initially along the y-axis in the rotating
frame. The rate of rotation is such that spins at posi-
tion 'E’ are on resonance and therefore do not evolve.
The middle of the sample, at z = 0 (E). experiences no
change in field while the gradient is applied. The mag-
netic field increases as the displacement from the center
increases. Spins above 'E’ experience a larger field and
spins below "E’ experience a smaller field. The direc-
tion of the arrows mark the position of the transverse
magnetization after the application of the gradient.



11.2.2  Effect of Coherence Levels on Gradient Induced
Phase Changes
e 10lag il — =10l ([ 4 i )e'?ls = L;cos¢ + Iysing + i [, cosp — I, sing]
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Generalizing from the above calculations, if a z-rotation of magnitude ¢ 1s applied
to a coherence of level p, then the coherence will be phase shifted by e~*P?, that is:

aP ¢ . gPe 1 PO
11.2.2.1 Example: Coherence Selection in a DQF-COSY Using
Gradients

The coherence level diagram for the DQF-COSY experiment 1s shown in Fig. 11.4,
One of the desired coherence paths is:

0 1 2 —1

a — -‘IT+ — ET+ — 0

This pathway can be selected by utilizing a total of three gradient pulses, one during
t;. one during the A period and one during detection to refocus the desired coher-
ence path, as illustrated in Fig. 11.4. The first gradient will label the single quantum

coherence with a phase shift of: b= —(+1)vG.1



The second gradient, of the same strength and length as the first, will induce an

additional phase shift of ¢ = —2 < v(—G, )7 in the part of the density matrix that
is represented by o2, Therefore, the overall induced phase shift after the second

gradient pulse is:

After the application of the third RE-pulse it will be necessary to refocus this phase
shift by applying a third gradient. At this point in the experiment the desired density
matrix has a phase shift of ® = — [1 + 2] G, 7 associated with it. Therefore a phase
shift of opposite sign has to be induced in the density matrix. This can be attained by
the application of a gradient that 1s either three times the length of the first gradient, or

one that is three times as strong. This gradient induces the following change in o™

1 — - O _ . _ . o
o IE [14+2]vG.T JD’ ]E—I—SﬂrGETE [14+2]vG.T — 1

Therefore, only magnetization that follows the coherence levels of +1, +2, and -1 will
be refocused by the last gradient pulse and give rise to a detectable signal.
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Figure 11.4. Coherence selection in a DQF-COSY experiment using gradients. One of the
desired coherence pathways in a DQF-COSY experiment is highlighted by a thick line on the
coherence scale shown in the lower part of the figure. Three field gradients are applied for
coherence selection, one during t;, one during the delay A, and one at the beginning of the
acquisition time. The gradients are all positive in this example. The induced phase shifts for
a particular position within the sample are shown on the top of the diagram. The first gradient
induces a 70° phase shift. The second gradient increases the phase shift to 210° (70 + 140). The
last gradient pulse reverses the phase shift that was induced by the first two gradients, resulting
in detectable signal from this particular coherence path.



11.2.3  Coherence Selection by Gradients in Heteronuclear
NMR Experiments

Pulsed-field gradients can also be used to select particular coherence paths in het-
eronuclear NMR experiments. For example, consider the HSQC pulse sequence
shown in Fig. 11.5. The application of two gradient pulses. G; and Gy will select
coherence paths in which the magnetization is transverse on the X-spin during t; and
then transverse on the proton during detection. Both gradient pulses are applied within
a spin-echo sequence (e.g. 7—180° —7) to prevent chemical shift evolution during
the application of the gradient. In the case of the first gradient pulse, the spin-echo
delay need only be as long as G plus its recovery time. In the case of the second gra-

dient pulse, the gradient is applied during the normal proton-heteronuclear refocusing
period. 7.

1
H %, 180, 90 180, 9 180, =1/(4J)
A B | 0 -
15 180 90 180_90 180 A
X X t1 X X e
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Figure 11.5. Use of pulsed-field gradients for coherence path selection in a HSQC experiment.
The application of the first gradient (G1) induces a phase shift in the various coherences that
comprise the density matrix. If the ratio of the two gradients is vx /~u . then heteronuclear sin-
gle quantum coherence that is present during ty is refocused as detectable proton magnetization
by the second gradient.



During the t; evolution time the density matrix that represents the heteronuclear
magnetization consists of o1 and o~ 1. Application of the first gradient, G. will in-
duce a phase shift of e717X%1 and etT17xE1 respectively, in each of these coherences.
The factor vx 1s explicitly written to take into account the fact that the precessional
frequency is proportional to v (See Eq. 11.18). The second gradient will induce a
phase shift of eT177%2 in the detectable proton magnetization, f:rg,l. If the gradient
strengths are adjusted such that

Cr_ (11.30)
Gy  x
then the phase shift induced in J:JEI at the end of t; will be refocused by the gradient
applied during the second INEPT period. Consequently, the only magnetization that
will give rise to a detectable signal must have been transverse and associated with the
X-spin during t; and then transfered to the proton for detection.

11.2.3.1 Coherence Rejection by Pulse-Field Gradients (z-filters)

Direct selection of individual coherences is very effective at suppressing unwanted
signals. Unfortunately, direct selection of coherence leads to loss of signal because
the phase shift that is induced in the o~ component of the density matrix by the first
gradient pulse cannot be rephased by the second gradient. Consequently, one-half of
the signal is lost by the gradient selection. Signal loss can be avoided by utilizing
eradients to dephase unwanted coherences without affecting the desired coherences
[15]. Recall that zero-quantum coherences (o) are not affected by field gradients.
Consequently., if the desired magnetization is stored along the z-axis during the appli-
cation of a gradient pulse, it will not be affected by the gradient. In the case of a single
spin, a gradient will have no effect when p = I... For two spins, a gradient will have
no effect when p = 21,5,. Gradient pulses that are applied to retain z-states of the



magnetization are referred to as z-filters in the case p = I., and zz-filters in the case
of p=2I1.5..

The application of this technique to the HSQC experiment is illustrated in Fig.
[1.6. Note that the 90° proton and heteronuclear pulses are no longer applied simulta-
neously, but are now offset from each other and a field gradient pulse has been applied
between the two RF-pulses. During this period, the desired component of the den-
sity matrix is along the z-axis. For example. at the end of the first INEPT period the
density matrix is: p=2I.5,

the 90° proton pulse along the y-axis converts this to: p=2I.5,
which 1s not affected by the applied pulsed-field gradient. The solvent signal, on the
other hand, will be transverse during the application of the gradient and will thus
receive a spatially dependent phase shift that will greatly attenuate its contribution to
the final detected signal.

11.2.3.2 Reduction of Artifacts in 180° Pulses with Field Gradients.

Refocusing pulses in heteronuclear experiments can introduce artifacts into the
spectrum if they do not completely invert the spins. Placement of a matched pair
of gradient pulses on either of side of the 180 pulse will dephase artifacts that are
generated from a non-ideal pulse. Examples of this technique are shown in Fig. 11.6,
involving pairs of gradients G1 and G2 plus G5 and G6.

[t 1s easy to show that the pair of gradients has no effect on the desired evolution of
magnetization during these periods. Prior to the pulse. the density matrix associated
with the proton magnetization is: —
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Figure 11.6. Artifact suppression with pulsed-field gradients in heteronuclear experiments.

Pulsed-field gradients can be used to suppress artifacts by either the rejection of coherences (z-
filter) or by the symmetrical placement of gradient pulses around 180° pulses. The two gradient
pulses that act as zz-filters are G3 and G4. These are usually of different strengths such that
G4 does not accidentally refocus magnetization that was defocused by G3. G1 and G2 serve to
remove artifacts from the 180° proton and heteronuclear pulses during the first INEPT period.
These two gradients must be the same amplitude. Gradient pulses Gs and Gg serve the same
purpose during the second INEPT period. This pair of gradient pulses must also have the same
amplitude, however the amplitudes of the Gy, G2 pair need not be the same as the Gs, Gg
pair. Note that all of these gradient pulses have no effect on the normal magnetization transfers
associated with the HSQC experiment, they simply remove artifacts and signals from protons
that are not coupled to heteronuclear spins.



After the first gradient, but before the 180° pulse. a phase shift. GG, has been induced
in the magnetization by the gradient, giving:

p=oTlemiG 4 g1eHiG
The 180° pulse interchanges the values +1 and -1 coherences, as follows:

0 e | Piso 0 eTiC
eTiCG 0 | emiC 0

oiving the density matrix after the 180° pulse, but before the second gradient,
+1 4G | [ —1,—iG

p=0
After the second gradient, these phase shifts are reversed, giving the original density
matrix:
p:g+1€—1G€—|—?(_r _G_—IE+1LTE—1G:U_+1 —I:T_l {]]3?}

However, in the case of an imperfect pulse, some of the transverse magnetization may
be converted to longitudinal magnetization. Since longitudinal magnetization is not
affected by the second field gradient (o) its phase will not be refocused by the second
gradient and will not appear as observable magnetization.

11.3  Coherence Selection Using Phase Cycling

Phase cycling involves acquiring and co-adding the free induction decays from a number
of experiments that are identical in all aspects, except the phases of one or more RF-
pulses and the phase of the receiver. In contrast to field gradients, coherence editing is
not obtained within a single scan, rather it is the summation of the data from all of the
individual scans that results in the cancellation of unwanted signals. For example, if an
experiment uses a four step phase cycle for one of the pulses then four individual FIDs will
be acquired with pulse phases of O, /2, m, and 3n/2. These four FIDs are added together
such that the signal associated with the desired coherence path add constructively while
signals associated with undesired paths are canceled by the summation



11.3.1 Coherence Changes Induced by RF-Pulses

The application of RE-pulses to the spins generates new coherence levels from ex-
isting ones. For example, if the first 90° pulse in the COSY or DQF-COSY experiment
is ideal, it will cause the following changes in coherences: S0 Pt o

In general, the effect of a pulse, P;, on a single coherence 1s to generate a manifold

of coherences: ;
PoP(t; )Pt =) o (t]) (11.39)
pa"

where o (t; ) represents the density matrix before the pulse, and pr o? (t7) repre-

sents p after the pulse.

The key to coherence editing using phase cycling is that a change in phase of the pulse
will produce a phase shift of the coherences that are produced by the pulse, providing
a means to label each coherence with a known phase shift.

11.3.1.1  Phase Shifts of Pulses are Z-rotations
To determine how changing the phase of the pulse generates a phase shift of coher-
ence levels 1t 1s necessary to write a general expression for a phase shifted pulse and

then evaluate the effect of this pulse on an arbitrary coherence level.
A change in the phase of a pulse 1s equivalent to the rotation about the z-axis of the

operators that describe the pulse. For example, if the phase of a excitation pulse in an
experiment 1s cycled in the following manner, P..P,.P_..P_,

Then the pulse along the y-axis is related to the original pulse along the z-axis by a
90° (7 /2) rotation about the z-axis, as follows:

Py _ E—iIZEPIEtIz

&5



In a similar manner, the pulse along the minus z-axis is obtained by applying a
[80°(7) rotation to the original pulse: P = H:mp ilem

The effect of phase shifted pulses on the density matrix is obtained by applying the
rotated pulse to the density matrix. For example, if an arbitrary density matrix. p, is
transformed to p, by an x-pulse with a flip angle of /3 as follows:

—ipl,  iBI

€ pe " — Pa
then the effect of a y-pulse on the same initial density matrix is given by:
[E—z‘fzw{QE—i,ﬁl’m Eﬂﬂm} P [E—ﬂzwmeingﬂﬂm} NS (11.43)

This equation can be written for any arbitrary pulse, F,, phase shifted by any arbitrary

amount, ¢:

p—i¢l POE—I_MM'Z pe—tqﬂz pﬂ—le—l—tqﬁfz — P (11.44)

Since any density matrix, p, can always be written as a linear sum of difference coher-
. _i_-]-l .. . . . . - : .

ences (e.g. p= ), , apoP)ItIs possible to simplify the analysis by considering a

single arbitrary coherence, o?.
Recalling that the effect of z-rotations on coherence levels is:

then, the following is true: o ti@lz ;P —i¢l: _ 5P, +ipd



The following shows the effect of a phase shifted pulse when applied to a coherence
level of p, to give pg:
Py = [E—z‘qﬂz Pﬂgﬂmz} 5P [E—iqbl’z pﬂ—le+i¢}fz]
_ o—itl:p. [E+i¢jzﬁp6_i¢1ﬂ prletiol:
— il P, [UPE+’5P¢5} pPlotiol: (11.47)
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Assuming that the application of a pulse to a single coherence generates a manifold of

different coherences after the pulse: PP Pﬂ_l . Z gP’
o
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where ¢ is the phase shift of the pulse relative to P, and Ap is the change in coherence
level caused by the pulse (Ap = p(t7) — p(t])).

Equation 11.48 shows that if a pulse produces a coherence jump of Ap, from o?
to o? , and if that pulse is phase shifted by an angle ¢, then the coherence o?" will be
shifted in phase by —iAp@ due to phase shifting of the pulse. This is the key step in
phase encoding the magnetization for coherence selection.



11.3.1.2

Each coherence path in an experi-
ment can be defined by either the co-
herences present during various time
periods between pulses or equiva-
lently by RF-pulse induced coherence
jumps. The former description is
useful for coherence selection with
pulsed-field gradients while the latter
is more useful for coherence selection
by phase cycling of RF-pulses.

For example, in the COSY exper-
iment there are three coherence paths
that connect the initial state (p = o)
to the final detected coherence level,
o~!. The location of these coher-
ence jumps in the pulse sequence are
shown in Fig. 11.8. The first two
paths are desirable, while the third
path will give rise to an artifact in the
spectrum.

Description of Coherence Pathways Using Coherence Jumps

O | | |
o 1 2 2

L — s

o 0 == ! !

Qo = =1

oo

Figure 11.8. Coherence jumps in the COSY ex-
periment. Three possible paths of coherence
changes in the COSY experiment are illustrated.
Note that only paths that end at a coherence level
of -1 will give a detectable signal. The first path
is represented by the dotted line and 1s described
by coherence jumps of Ap; = +1, Apy; = —2.
The second path is represented by the dashed
line and consists of coherence jumps of Ap; =
—1, Ap>, = 0. Both of these paths will give
rise to a normal COSY spectrum. The solid line
shows the third undesired coherence path, with
&Pl == U._,&pz = —1.



Phase encoding of the different coherences can be achieved by changing the phase
of the RF-pulses. The resultant phase shift of the coherence is the product of the phase
shift of the RF-pulse, ¢, and the change in coherence, Ap. Since a single coherence
pathway is defined by a unique set of coherence jumps, it is possible to select out
specific pathways by the appropriate phase cycling of pulses in much the same way
gradients were used to select coherence paths. The phase shift that is associated with
the desired pathway is refocused at the end of the experiment such that the desired
coherence paths will add constructively to the overall signal.

The aggregate phase of the signal that is associated with a particular coherence path
depends on the coherence jumps associated with that pathway and the phase shifts of
the pulses at each coherence change. For every coherence path (j), the change in the
coherence levels can be represented as a vector: ﬁpj = (Apy, Aps, ...)

For the first path listed above for the COSY experiment (Fig. 11.8): Ap = (+1., —2).
The phase shifts associated with each RF-pulse can also be written as a vector:
O = (01, 02,...)
The total phase shift that is accumulated over any particular coherence path, j, is just
the dot product of these two vectors: - 7
P {I)j = AP - ¢

For example, the total phase associated with the first coherence path in the COSY
experiment is:

Oy = AP + APypo = (—|—1) X @1 + (_2) X @2



In general, the signal associated with the 7" path is: S; = SEE—@J'

where 57 represents the signal that would be obtained with no phase shifting of pulses

(e.o. J: 0).

L

11.3.2  Selection of Coherence Pathways

The detected signal will contain a contribution for each coherence path in the ex-

periment:
S=Y"8;=) Sge ' (11.54)
J J

Using the COSY experiment discussed in Fig. 11.8 as an example, the final signal
from any given scan is: S — ng—ﬁ’l 4+ 5’205—?5‘1’2 4+ Sgg—iq’ﬂ

The first two terms represent signals from desirable coherence paths, while the third
term represents the signal from an undesirable path that will be eliminated by the phase
cycle.

In contrast to coherence selection by pulsed-field gradients, the signals with differ-
ent phases, S, do not cancel. Therefore, the selection of a particular coherence path is
accomplished by the selection of pulse phases and receiver phase such that the desired
signal always adds for each scan of the phase cycle while the signals from undesired
paths sum to zero at the completion of the phase cycle.



11.3.2.1 Defining Phase cycles

The required phase shift associated with one pulse, ¢, will depend on how many
coherence jumps have to be filtered out by the particular pulse. A phase shift of:

=0, 1...(N 1)

27
N

will select out coherence orders: A-pi nN; n=..-2,-1,0,1,2,..., provided that
the receiver phase is set to —iAp X ¢ ThlS settmg of the receiver phase will insure
that desired signal will always appear as the real signal to the receiver, resulting in the
co-addition of this signal over the entire phase cycle. In contrast, all other signals will
sum to zero.

As an example, consider phase cycling of a single pulse with the intent of selecting
a coherence change, Ap. of -2. If N is set to 3, corresponding to a three step phase
cycle (pulse phases of 0, 27 /3, and 47/3). and the receiver phase is set to 0, —47/3.
and —87 /3, then coherence jumps of -2 =3n will be retained, as shown in Fig. 11.9.

The result illustrated in Fig. 11.9 can be easily proven in general. First assume that
an N-step phase cycle results in the positive selection of coherence jumps, Ap = niN.
As an example let Ap’ = Ap+N. To select this coherence jump it would be necessary
to set the receiver phase to e ~**P?_This receiver phase is represented below by phase

¢ =

shifting the signal in the opposite direction, e.g. multiplying it by e ™*2P? (this term is
underlined in Eq. 11.58). The detected signal will be the sum of all three signals, one

for each phase of the pulse. The phase shift introduced in the signal by each RF-pulse

iS: E—z,&p Tk



where k. = 0.1,2and N = 3.
The net signal is given by the sum over the phase cycle:

S

N-—-1

> ¢

k=0

N—-1

_ E zr’l
k=0
N-—-1
D¢
k=0

12?1' 2m 21'1.'
i Ap' 4 kS[}E iApSrk E :Et(&p—i—N) ks e —iAp Sk
pzwk ENZWR:S t&pzwk (I 1.58)
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Now consider the case of rejection of the signal: Ap" = Ap+m m # N
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Figure 11.9.  Selection and rejection of coherences in the COSY experiment by phase cycling.
The upper senes of diagrams show the signal for pulse phases of 0, 27 /3, and 47 /3 for a
coherence jump of Ap = —2. The lower series of diagrams show the signal for a coherence
jump of -1. The real and imaginary axis of the recerver are also indicated. The receiver phase 1s
sel to: —Apd, where —Ap is the desired coherence jump and ¢ is the phase of the RF-pulse. In
this example, the receiver phase has been set to select the —2 coherence jump. Consequently,
the signal associated with that coherence 1s always detected as the real signal by the receiver. In
the case of a coherence jump of -1, the signal is not in phase with the receiver and the net sum
of the real and imaginary channels is zero after completing all three scans of the phase cycle.
The first column of the table shows the phase of the pulse, the second column shows the signal,
including the phase shift introduced by the coherence jump and the change in the phase of the
pulse. The third column shows the receiver phase setting for each scan. The last two columns
show the signal for the real and imaginary channels, respectively. Note that the signals add in
the case of Ap = —2 but cancel in the case of Ap = —1.



11.3.2.2 Example - Coherence Selection in the COSY Experiment

The coherence paths and associated coherence jumps in the COSY experiment are
shown in Part A of Table 11.2. The first two give rise to the desired signal and the
third needs to be suppressed by the phase cycling. It is necessary to retain both of the
desirable paths to allow for quadrature detection during t; (see Chapter 12). Therefore,
coherence jumps of =1 need to be retained from the first pulse, and jumps of -2, and
0 need to be retained from the second pulse. This selection will reject the coherence
path 0° — % — o~! because that pathway is associated with coherence jumps of 0
and -1 for the first and second pulses, respectively.

The required Ap and number of steps (N) in the phase cycle are summarized in
Table 11.2. In the case of the first pulse, Ap = +1 and it is necessary to set N=2 to
select for both Ap = +1 and Ap = —1. For the second pulse Ap = —2 and N is set
to 2 so that a coherence jump of 0 will also be selected. The receiver phase for each

set of phase values is calculated from:
Prec — _Egpj ) ({F__ﬁ’ — _E(Apl le + Ap2¢52) (1 1'63)

The pulse phases and associated receiver phases are given in part B of Table 11.2.
Since the phase of each RF-pulse has to be cycled independently of the other, it is
necessary to perform a four step phase cycle to obtain all possible permutations of the
pulse phases (e.g. 2 x 2). The first two steps in the cycle serve to select the desired
coherence jumps at the second pulse when the phase of the first pulse is 0. After
the phase of the first pulse is changed to 2 (), it is necessary to repeat the two-step



phase cycle of the second pulse to select the desired coherences at the second pulse.
After all four steps of the phase cycle are summed the contribution of the undesired

0° — 0° — o~ ! coherence path would be completely suppressed.

Table 11.2. Coherence changes and phase cycle in the COSY experiment. Part A of this table
shows the three possible coherence paths, and the equivalent description of these pathways in
terms of coherence jumps at each pulse in the experiment. The 1st and 2nd pathways should
be retained by phase cycling and the last pathway needs to be suppressed. The lower part of
the table indicates the Ap value and number of phase increments that are required to select the
coherence jumps for both desired pathways. The coherence jumps that would be selected by
these values of Ap and N are also shown.

A:
Coherence Path Coherence Jumps (Ap)
1° Pulse 2" Pulse

o — ot = o7t +1 -2

o' — ot - ot -1 0

o — o0 Y —o7! 0 -1
Ap +1 -2
Number of Steps (N) 2 2

Coherence jumps selected Ap=..—-3,—1,+1,+3... Ap=..—4,-20+2..




Part B shows the four-step phase cycle of this experiment. The phases for the RF-pulses, and the
associated receiver phases, are shown. The short-hand notation for pulse and receiver phases is:
0=0,7/2=1,7 = 2, 37/2 = 3. The receiver phase is calculated using Eq. 11.63, using
Ap; = +1 and Aps = —2. For example, the third step of the phase cycle has pulse phases of

¢1 = m and ¢2 = 0, therefore the receiver phase is: Yrec = —[(+1)(7) + (=2)(0)] = —7 =
m. This phase is represented by a 2 in the table.
B:
Phase Cycle Step

1 3 4
First Pulse 0 0 2 2
Second Pulse 0 2 0 2
Receiver Phase (@rec) 0 0 2 2

11.3.3  Phase Cycling in the HMQC Pulse Sequence

Phase cycling can also be used for coherence editing in heteronuclear pulse se-
quences. To simplify the analysis, the coherence order changes are followed indepen-
dently for each type of spin. In contrast to coherence selection with gradients, the
phase shifts in the coherences that are introduced by phase cycling are independent of
the type of nucleus. Consequently, the overall receiver phase that is required to select
the desired coherence pathways is simply —-iﬁpf r;



Coherence levels in the HMQC Experiment

The HMQC pulse sequence is shown in Fig. 11.10. The coherence levels that are
present at various locations in the sequence can be inferred from the Cartesian repre-
sentation of the density matrix:

H 5 ty o 1 S
FPaq A FPgp - 180y =~ FPgq A
Iz: — _I-y — I_'I;Sz — — — IESZ — Iy
o +1 +1 +1 +1
o Ox Oy T 0g Ox

The coherence changes in the HMQC experiment are illustrate in Fig. 11.10. The
first proton pulse creates single quantum proton coherence. The next heteronuclear
pulse generates single-quantum X-nucleus coherence that persists throughout the t;

labeling period. During the t; period the 180° pulse on the proton converts the f::r;}l

1H ¢1 {1)3 Figure [1.10 Coherence
I A I A | . jumps in the HMQC ex-

T - periment. The separate

X IjJE t, ’I{h‘ v coherence jumps for the
proton and heteronuclear spin

1|-| +1 _ are shown for an HMQC
0 ¢ )\ experiment. The solid line

-1 and the dashed line show the

X +(1.‘ 7 \ coherence paths that are to be

-1 . retained by phase cycling.



—1 . : .
coherence to o coherence, a net change of £2. This two level change in the coher-
ence can be understood by writing /. as the sum of the raising and lowering operators:

I, = é(ﬁ L I)

The effect of the 180° pulse on I is: IT=1,+ ily — I, —ily, =1
or a net change in coherence of -2.
The single quantum coherence associated with the X-nucleus is returned to zero

quantum coherence by the second heteronuclear pulse, and the density matrix refo-
cuses to single quantum coherence by the end of the A delay.

Defining the Phase Cycle

The first proton pulse is generally not phase cycled since imperfections in this pulse
cannot give rise to detectable magnetization. The phases of the three remaining pulses
are cycled to remove artifacts. The desired coherence jumps and number of phase
shifts that are associated with each pulse are shown in Table 11.3.

The coherence jump associated with the first X-nucleus pulse is +1. However, since
a jump of -1 must also be preserved, a two step phase cycle is required. In a similar
manner, the desired coherence jumps associated with the last X-nucleus pulse is either
-1 (solid line in Fig. 11.10) or +1 (dotted line), required a two step phase cycle. A
total of four steps (N = 4) are required for the proton 180° pulse since the desired
coherence changes are either -2 or +2. Choosing a Ap of +2, and N = 4, insures that



only Ap values of -2 and +2 will be retained. Note that coherence jumps of -6 and +6
are also retained by this selection since Ap = Ap =+ N, but such high coherence levels
cannot be attained with two coupled spins.

Since each phase cycle operates independently of the other phase cycles. a total of
16 scans are required (2 x 4 x 2) to suppress all of the artifacts. The complete phase
cycle, including the receiver phase, is shown in Table 11.3.

Experiment Number

Pulse Ap 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 1 o 2 o0 2 o0 2 0 2 0 2 0 2 0 2 0 2
3 2 o o 1 1 2 2 3 3 0 O I 1 2 2 3 3
A 1 o o o o o o o o 2 2 2 2 2 2 2 2
Orec - o 2 2 o0 o0 2 2 0 2 0 0 2 2 0 0 2

Table 11.3. Phase cvcle of the HMQC experiment. The desired coherence jumps are shown
in the second column from the left. Note that the first proton pulse (¢1) is not phase cycled.
The first heteronuclear pulse (¢2) should generate a =1 coherence jump from the initial 0.
The allowed coherence jumps that are associated with the proton 180° pulse are =2 and those

associated with the final heteronuclear pulse are -1 for J}l and +1 for CT;:l. The receiver phase,
Pree. is calculated from —Ap - . For example, the phase of the receiver for the 16"™ pulse is:

—[(1)(2) +(2)(3)+ (1)(2)] = =10 = —2 = +2.



