
Chapter 4    QUANTUM MECHANICAL DESCRIPTION OF NMR
Schrodinger Equation: 

In the above equation, H, or the Hamiltonian, can also be described as an operator. 
Operators are mathematical representations of observables, such as energy, that are 
applied to wavefunctions. The Hamiltonian is a very important operator. Not only can it 

id  th   i t d ith  t t  f th  t  b t it l  d t i  h  th  provide the energy associated with a state of the system, but it also determines how the 
system evolves in time.

The application of an operator onto a wavefunction returns the values of the 
observable and another wavefunction  If the same wavefunction is returned  then these observable and another wavefunction. If the same wavefunction is returned, then these 
wavefunctions are given a special name, eigenfunctions1, and the observable is called an 
eigenvalue.  For example, the application of the Hamiltonian to one of its eigenfunctions
will return the same eigenfunction multiplied by the energy of that state: 

Here, Ψ is an eigenfunction of H, and is associated with an eigenvalue of EΨ. 
Wavefunctions that are eigenfunctions of the total energy are referred to as stationary 
states because only their phase changes during time evolution:

and the solution of this equation is:

The quantum mechanical description of NMR will utilize wavefunctions to represent 
th  t st t  f th  m ti ti  t  i t i   x im t  Th  H milt i  the current state of the magnetization at any point in an experiment. The Hamiltonian 
that is present at that time will describe how the magnetization (wavefunction) will change 
with time. Therefore our goal is to describe the wavefunction associated with the initial 
state of the NMR experiment, and then use the Hamiltonian to determine the evolution of p ,
the magnetization as the experiment progresses, up to and including, the detection of the 
final signal.



4.1.1 Vector Spaces and Properties of Wavefunctions
Any arbitrary state of the system can be described as:

Where u s are the basis vectors which are orthogonal to each other  i e  Where uis are the basis vectors which are orthogonal to each other, i.e. 
ci is the projection of the state of the system onto the ith basis vector.
The probability, Pm, that any given system can be found in any particular basis
state m is given by:g y

4.2 Expectation Values
The average, or measured, value of any observable can be extracted from the 

wavefunction of the system by calculating the expectation value. For example, the y y g p p
expectation, or observed, value of the energy of a system is given by:
and that for the x-component of the spin angular momentum:
If the system is described as a mixture of the basis states                        then the 
expectation value is the weighted average, using the energy of the system as an example:

For a system in a pure state k then <E> = Ek since Pk = 1.For a system n a pure state k then E   Ek s nce Pk  .

4.3 Dirac Notation
In the case of NMR, the wavefunctions will represent   different states of the nuclear 

spin. Since there are no spatial coordinates associated with these wavefunctions it is p n. nc  th r  ar  n  pat a  c r nat  a c at  w th th  wa funct n t  
necessary to develop a different representation of wavefunctions, their basis vectors, 
operators, and associated expectation values. This representation was developed by Dirac 
and is often referred to as the ’Bra-Ket’ notation.

4.3.1 Wavefunctions in Dirac Notation
The individual basis functions, um, are represented as |um >. The complex conjugate of the 

basis functions are written as < um|. The orthonormality relationship is written as:



Any arbitrary wave function is represented as:y y p

The individual coefficients, cm are obtained in the usual way:
In systems with a finite number of eigenstates it is convenient to 

represent wavefunctions as vectors  In this representation  the basis represent wavefunctions as vectors. In this representation, the basis 
vectors the wavefunction of an arbitrary system can be written as a
vector composed of the coefficients of its eigenstates:

4 3 3 O t  i  Di  N t ti4.3.3 Operators in Dirac Notation
The Bra-Ket representation can be extended to operators. In this

case, operators are represented by a matrix, whose elements are 
defined as:       Aij =< ui|A|uj >f n  a        ij  ui| |uj
For example, the Hamiltonian operator for a particle in a box is:

4.3.4 Expectation Values in Dirac Notation
Using the example of the energy of the system, the expectation value of an operatorg mp f gy f y m, p f p

is given as:

4.4 Hermitian Operatorsp
Hermitian operators are those operators whose eigenvalues are real. Since the

eigenvalues are real, the expectation values are also real. Therefore Hermitian operators
correspond to physically observable properties of the system.



4.4.1 Determining Eigenvalues
Until this point we have assumed that the basis vectors are eigenvectors of the 

Hamiltonian. As such, Huk = Ekuk. This assumption implies that the matrix form
of H is diagonal  This form of the Hamiltonian is convenient in that the energies of the of H is diagonal. This form of the Hamiltonian is convenient in that the energies of the 
different basis states can be read from the diagonal elements. This simple diagonal form 
of the Hamiltonian exists only in one particular coordinate frame. In this frame the 
eigenfunctions of the Hamiltonian also have a simple form, e.g. u†

3 = [0 0 1 0. . .] and the g p g 3 [ ]
eigenvalues form the diagonal elements of the operator. For example, consider the 
following example of a Hamiltonian and associated wave functions for a spin 1/2 system:

The eigenvalues (λn) are immediately seen to be: λ1 = 1, λ2 = −1.
Often it is necessary to work in a different reference frame to describe the state ofOften it is necessary to work in a different reference frame to describe the state of

the system. In this case, the basis vectors will no longer have a simple form and the
matrix representation of the Hamiltonian will be non-diagonal. For example, if the
coordinate frame is rotated by 45◦, the above Hamiltonian appears as follows ……..

4.5.2 Time Evolution of Observables
4.5.3 Trace of an Operator
4.5.4 Exponential Operatorp p

The operator, eA, is defined as:

If A is Hermitian, then eA is also Hermitian. Furthermore, if the eigenvalue of A is λ,
then the eigenvalue of eA is eλ  If two operators  A and B  commute then the followingthen the eigenvalue of eA is eλ. If two operators, A and B, commute then the following
is true:           

eAeB =  eBeA =   eA+B



4.5.5 Unitary Operators
An operator is unitary if its inverse and its adjoint are equal:

U†U = UU† = UU−1 = 1 
U it  t  d  t ff t th  l th  f t  j t th i  di ti  Th fUnitary operators do not affect the lengths of vectors, just their direction. Therefore

unitary operators perform rotations on wavefunctions and other operators. Consider
the application of a Unitary operator on two wavefunctions:

|Ψ1 > = U|Φ1 >;           |Ψ2 > = U|Φ2 >|Ψ1   U|Φ1 ;           |Ψ2   U|Φ2 
The scalar product of these two functions is invariant to the unitary transformation:

< Ψ1|Ψ2 > = < Φ1|U†U|Φ2 > = < Φ1|Φ2 >
4.5.6 Exponential Hermitian Operatorsp p

If an operator A is Hermitian, then the operator W, defined as, W = eiA is unitary.
4.6 Hamiltonian and Angular Momentum Operators for a Spin-1/2 Particle:

Stern-Gerlach experiment demonstrating the presence of quantized spins. For the spin ½ 
t  th   b  l  t  t t                                     system there can be only two states,                                .    

In Dirac’s notation the wave functions of these two 
states can be written as : 

These are orthonormal.  

Using these wavefunctions, the matrix form of the operator, Sz, is:



Th  th  t  t  f  l  t   bt i d b  th   f th  i iThe other two operators for angular momentum are obtained by the use of the raising
and lowering operators, which are defined as follows:

J+ = Jx + iJy ;              J− = Jx − iJy
Sx and Sy can be obtained from a linear combination of the raising and loweringSx and Sy can be obtained from a linear combination of the raising and lowering

operators:   Sx = 1/2[J+ + J−] ;        Sy = 1/2i[J+ − J−] 
The raising operator increases the z-component of the angular momentum by one

unit and is defined by the following equation:

In these equations, |j,m > represents a wavefunction with j as the quantum number for 
the total spin angular momentum and m is the quantum number of the z-component of the 
spin angular momentum. For a spin-1/2 system (j = m = 1/2) these simplify to:

The raising operator cannot increase mz higher than +1/2 so, J+|u+1/2 > gives a null
vector, represented by  . Similarly, since the lowest value of mz is ‐1/2, J−|u−1/2 >
also gives a null vector The matrix representation of the raising and lowering operators are obtained inalso gives a null vector. The matrix representation of the raising and lowering operators are obtained in 
the same fashion as Sz:  



Similarly:

In summary, the matrix representations for the three Cartesian components of angularn summary, th  matr  r pr s ntat ons for th  thr  art s an compon nts of angu ar
momentum are:

The matrix representation of the Hamiltonian operator is proportional to Sz:The matrix representation of the Hamiltonian operator is proportional to Sz:

Note that Sz and H are diagonal using these basis vectors. Therefore the basis z g g f
vectors u+1/2 and u−1/2 are eigenvectors of both of these operators. The eigenvalues are
simply the diagonal elements of the matrix form of the operator, for example:

Since the operators Sz and H clearly share the same eigenvectors they must also 
commute with each other  Consequently the expectation value of Sz is time invariant commute with each other. Consequently the expectation value of Sz is time invariant 
under the influence of this Hamiltonian. In contrast, these basis vectors are not 
eigenvectors of the operators for transverse magnetization, Sx and Sy, as can be seen 
from the following:



4.7 Rotations

All NMR RF-pulse sequences (experiments) can be described as a series of rotations 
(i e  pulses) applied to the system followed by time evolution of the system under the (i.e. pulses) applied to the system followed by time evolution of the system under the 
influence of various Hamiltonians. For example, the simple one pulse experiment involves a 
rotation of the magnetization by a 90◦ pulse followed by rotation of the transverse 
magnetization about the z-axis due to evolution of the system under the Hamiltonian, H. 
Therefore, it is important to develop operators that describe rotations. In doing so, we 
are developing a method of representing pulses as well as the free precession of spins in 
an NMR experiment.

4.7.1 Rotation Groups
rotation can be characterized by an axis of rotation and an amount of rotation. For 

example, the operator that describes a rotation of α degrees about the z-axis can be p , p g
written as:

In general                                        . However, two 
rotations performed along the same axis always commute.p g y

Rz(90)Rx(90) versus Rx (90 )Rz (90 )



4.7.2 Rotation Operators
Rotation operators change the orientation of wavefunctions and operators with respect 

to a fixed coordinate system. This should not be confused with the rotating frame of 
reference. Here, the wavefunctions rotate, not the coordinate frame.
The rotation operator for a rotation about u becomes:

I  Di  t ti  th  t ti  t  iIn Dirac notation, the rotation operator is:

4.7.2.1 Rotation Operator is Unitary
Rotations, by their very nature, do not affect any lengths or physical properties of the Rotations, by their very nature, do not affect any lengths or physical properties of the 

system, they simply rotate the system to a new orientation. Therefore, we expect the 
rotation operator to be unitary, R†R = RR† = 1. This can be easily seen by taking the product 
of Ru and R†

u.

Thus, 

4.7.3 Rotations of Wave Functions and Operators
A  th t  t   b  d ib d i   t f b i  t  \  ith Assume that our system can be described using a set of basis vectors, \un >, with 

eigenvalues for an operator , A, of an:    A|un > = an|un >
If we perform a rotation on the system, a new basis set is generated in the same 

coordinate system:     |u ‘> = R|u > coordinate system:     |un > = R|un > 
These new basis vectors will be eigenvalues of the operator in the new form of the 

wavefunction:      A’|un‘> = an|un‘>
The effect of rotations on operators: A’ = RAR†The effect of rotations on operators:    A   =  RAR



4.7.3.2 Example: Rotations about the x-axis
Rotations about the x-axis are equivalent to RF-pulses applied along the x-axis. In this 

case, the axis of rotation is specified as: θ = 90◦, φ = 0◦, giving the following rotation 

matrix:                                                    . For 90o rotation:

If this operator was applied to u+1/2:

This rotation has converted the original wavefunction, u+1/2 to a linear combination
of u 1/ and u 1/  indicating that a transition in the system has occurred due to theof u+1/2 and u−1/2, indicating that a transition in the system has occurred due to the
rotation, as would be expected for a 90◦ pulse.

The effect of the 90◦ rotation on the Hamiltonian operator is:

Note that the rotated H is no longer diagonal. Regardless, the eigenfunctions of H
are the rotated wavefunctions, u, determined above.



180◦ Rotation: α = π

Applying this rotation to u+1/2:

The 180◦ rotation completely converts one eigenstate, u+1/2, to the other eigenstate, u−1/2. 
This is the expected behavior of a 180◦ pulse, exchanging the populations of one state for 
another.

360◦ Rotation: α = 2π
We expect this rotation to leave any operator or wavefunction unchanged, Ru(2π) = ˜1, 

the unity matrix  This result should always be obtained  regardless of the direction of the the unity matrix. This result should always be obtained, regardless of the direction of the 
rotation axis: 

Ru(2π) = ˜1cosπ − iσusinπ = ˜1(−1)

The negative sign simply represents a phase shift of the wavefunction and does not
change any expectation values.


