
Chapter 5
QUANTUM MECHANICAL DESCRIPTION OF A ONE PULSE EXPERIMENT

Figure 5.1. Quantum and classical description of a one-pulse experiment. The pulse 
 d lt t FID  h  i  th  t  ti  f th  fi  Th  i t i  sequence and resultant FID are shown in the top section of the figure. The experiment is 

divided into three sections:  (1) Preparation period, prior to the pulse; (2) Excitation by a 
90◦ RF-pulse along the minus x-axis. (3)The detection period. 

Quantum mechanically the magnetization is represented by a wavefunction  pulses become Quantum mechanically the magnetization is represented by a wavefunction, pulses become 
rotation operators, and the detected signal is the expectation value of the x- and y-
components of the spin angular momentum.

The operator for the spin angular momentum along u isThe operator for the spin angular momentum along u is

(Remembering:                                                                                   )



This operator has eigenvectors (written in terms of the eigenvectors of the Hamiltonian,
u+1/2, u−1/2):

The wavefunctions |+ >u and |− >u describe the basis vectors of a spin oriented along the u 
axis.

5.1 Preparation: Evolution of the System Under Bo:                      =  EΨ 

If Ψ is an eigenfunction of the Hamiltonian (HΨ = EΨΨ), then the above equation
can be integrated directly to give the following;

For the eigenfunctions of a spin one-half particle, the time dependence of the 
eigenfunctions are explicitly:g nfunct ons ar  p c t y

The time dependence of |+> state is: 

(5.8)

Comparing Eq. 5.3 to Eq. 5.8 shows that:              θ(t) = θ0 ;               φ(t) = φ0 − ωst

Thus, the angle of u with respect to the field, θ, does not change in time, but u precesses
nd ˆk ith n n l  l it  ω  th  bs pti n f n  f th  t nsiti naround k with an angular velocity ωs, the absorption frequency of the transition.

Note that this precession is identical to the classical precession of the magnetic moment
about the Bo field.



The expectation values of the z- and x-components of the angular momentum of the 
system are easily calculated for the basis functions (See 5.8):                     ;

Note that the z-component of the angular momentum is not time dependent. Since the 
energy of the system is directly proportional to Sz, the energy of the system is also time 
invariant, as one would expect for a spin in a static magnetic field. In contrast, the x-invariant, as one would expect for a spin in a static magnetic field. In contrast, the x
component is time dependent, oscillating with a frequency equal to ωs. The spin is precessing
about the static magnetic field at its Larmor frequency, as expected from the classical 
model.

5.2 Excitation: Effect of Application of B1:
The Hamiltonian operator in the presence of the B1 field on the x-y lane is given by:

Using the definitions of the Sx, Sy, and Sz
operators it is possible to express the                                                                     
Hamiltonian in matrix form as the following:                                                              (5.13)

Choose an arbitrary wavefunction :                                                                   (5.15) 



Then the evolution of ψ is given by:
Substitute H and ψ we got:

(5 17)(5.17)

Equations 5.16 and 5.17 indicate that the wave function now becomes time dependent, i.e. 
the probability that the system will be found in one of the two eigenfunctions of the 
H l  h  h  h   d d    d ff l   l   h  Hamiltonian changes with time. These time dependent equations are difficult to solve in their 
current form. It will be more convenient to analyze in the rotating frame. The operator for 
rotation about the z-axis at a rate of ωrt is (Eq. 4.101 on p. 133):

(5.20)

Where σ is the Pauli matrix

The angular momentum Su = (ħ/2) σu and g u ( ) u

The effect of this rotation on the wave function is:
(5.23)

The coefficients in the rotating frame are:
Substituting these into eq. 5.16 and 5.17 and after some math we got:

and



The coefficients of the ar
+ and ar

− terms can be used to define the effective Hamiltonian
in the rotating frame. After some math and assume that the rotation rate of the 
coordinate system is equal to the frequency of the B1 pulse, i.e. ω = ωr, and we define ∆ω = 

 f  h   dωs − ωr for th eon resonance condition:

The time evolution of the system in the rotating frame during the RF-pulse can be 
calculated from the Schrodinger equation to give:

The above expressions shows that the time evolution of the system during a pulse is 
equivalent to a rotation. The direction of the rotation axis is defined by the direction of 
the pulse and the rotation angle is given by ω1τ , where τ is the duration of the pulse.

5.2.1 The Resonance Condition
Since the evolution of the system during the pulse is simply described by a rotation 

operator  it is easy to calculate the state of the system after the pulse  given the state of operator, it is easy to calculate the state of the system after the pulse, given the state of 
the system before the pulse. Taking the specific case of a system beginning in the u+1/2
state (a+ = 1), the effects of a 90◦, 180◦, or 360◦ pulse on this state are as follows (See Eqs. 
4.121, 4.126, and 4.127, in Chapter 4):p



The probability of finding the system in the u−1/2 after the pulse, P−1/2, is just a −a−, giving:

The probability of finding the system in the u−1/2 state, P− = a −a−, can be calculated using 
the effective Hamiltonian in the rotating frame. The dependence of P− on the frequency 
offset (∆ω = ωs − ω) and pulse length, τ , is given by Eq. 5.32 (see Cohen-Tannoudji et al. [42] 
for more details). This transition probability is shown in Fig. 5.2 for an on-resonance pulse 
and a pulse that is 6000 Hz off resonance. The field strength of the pulse, ω1 was 2500 Hz, 
giving a 90◦ pulse of 100 μsec. Note that the transition probability oscillates with time. In 
the case of the on-resonance pulse  there is complete conversion of the system from the the case of the on-resonance pulse, there is complete conversion of the system from the 
u+1/2 state to the u−1/2 state in 200 μsec. This corresponds to a 180◦ pulse, or complete 
inversion of the magnetization. At four times the 90◦ pulse length, or 400 μsec, the system 
is returned to the original state, corresponding to a 360◦ pulse. The transition probabilities 
for the on-resonance pulses in Fig. 5.2 (solid curve) are identical to those presented in Eqs. 
5.31, as expected.

Figure 5 2  Effect of frequency offset on transition Figure 5.2. Effect of frequency offset on transition 
probabilities. The probability of finding the system in the 
u−1/2 state, after starting entirely in the u+1/2 state at t=0 is 
shown for an on-resonance pulse (solid line) and a pulse that p p
is 6000 Hz off-resonance (dashed line).



In the case of an off-resonance pulse, the extent of conversion between states is 
significantly smaller, showing that an off-resonance pulse is less efficient at causing 
transitions. Also note that the frequency of the oscillations of P(t) has increased for the 
ff  l  h   d   h  f  h  h  ff   f ld  l  h  off-resonance pulse. This is due to the fact that the effective magnetic field is larger than 

for the on-resonance spins, causing a faster transition rate, or a faster precessional rate in 
the classical model.

5.3 Detection: Evolution of the System Under Bo

After the pulse, the magnetization will precess about Bo, as it did during the preparation 
period  The difference between the state of the system prior to the pulse and after the period. The difference between the state of the system prior to the pulse and after the 
pulse is that the system will have been rotated to a new direction, u by the application of 
the RF-pulse. As before, the z-component of the spin angular momentum of the system will 
be time invariant. In contrast, the expectation value of Sx will evolve as cos(ωst), while the 

i  l  f ill l   i ( )  i  h  i  d i  d l d expectation value of Sy will evolve as sin(ωst), generating the cosine and sine modulated 
signals in the detection coil.



Chapter 6    THE DENSITY MATRIX & PRODUCT OPERATORS

The system at the beginning of the experiment:

A  h  d f h  NMR i   At the end of the NMR experiment:  

Regardless of the change in the coefficients, it is possible to calculate the expectation 
value of any observable. For example  the signal detected in the real channel of the receiver  value of any observable. For example, the signal detected in the real channel of the receiver, 
Sx, is given by:

However, in most NMR experiments, the detected signal arises from an ensemble of N spins, p g p
therefore, the average expectation value of Sx is the actual observable:

Thi  bl    b  bt i d i   f t   Th  fi t th d i l  This ensemble average can be obtained in one of two ways. The first method involves 
calculating the evolution of all N wavefunctions through the experiment and then averaging 
over all N spins. This procedure is very tedious. The second method use density matrix 
approach, which is more concise and manipulatable.approach, which is more concise and manipulatable.

The density matrix is a matrix whose elements contain information on the average
probability of all possible states of the ensemble. Instead of following the evolution of
th  diff t f ti th h th  i t  th  l ti  f th  d it  t ithe different wavefunctions through the experiment, the evolution of the density matrix
is followed. At the end of the experiment, the average expectation values are obtained
from the final density matrix. The close correspondence between the wavefunction
and the density matrix is illustrated below:and the dens ty matr x s llustrated below



6.1 Introduction to the Density Matrix
The information on the ensemble average of a system is contained in the ensemble 

average of the pairwise products of the coefficient that are associated with the basis 
vectors, for example:

Therefore, if we specified the value of:                      for all possible values of i and j, 
then the properties of the system are completely determined  The density matrix  ρ  then the properties of the system are completely determined. The density matrix, ρ, 
consists of all such products. 

The mth, nth element of the density matrix (ρmn) for an arbitrary, time-dependent, 
wavefunction is obtained as follows:

For a system with two basis vectors the density matrix is:                                        (6.7)

Th  i  l  f h  d i  i   d fi d b  E  6 6  f h   f  The matrix elements of the density matrix, as defined by Eq. 6.6 are of the same form 
as the matrix elements of an operator. Hence the density matrix is an operator, and will be 
transformed by rotations with the same rules as any other operator: 

6 1 1 C l l i  f E i  V l  F  6.1.1 Calculation of Expectation Values From ρ
The expectation value for an observable:

(The trace of a matrix is simply the sum of its diagonal elements)p y g
IF we know the density matrix of the system at anytime we can easily calculate the 

expectation values of an operator from that density matrix. E.g. The signal detected for the 
real dat channel would be:



6.1.2 Density Matrix for a Statistical Mixture
For the case of a single isolated spin, representation of the system by either its 

wavefunction or density matrix are essentially equivalent and equally tedious. However, if 
h    l  f  h  h  l   f l l    l there is a statistical mixture of states, such as the large number of molecules in a typical 

NMR sample, the density matrix is much more convenient. For an ensemble of spins, the total 
state of the system is given by:

where pk is the statistical probability of finding a spin in a particular state. pk is the fraction 
of the kth mixed state or sub-system in the sample, and ψk corresponds to the wavefunction
for that sub-system. Each ψk is a linear combination of the basis functions:

h  k  h  l  h l b b l  d h where ck
i are the normal quantum mechanical probabilities associated with 

finding the wavefunction in the ith state. The expectation value of any operator, A, for the 
kth sub-system is: 

The average value of this observable for the entire system is the expectation value The average value of this observable for the entire system is the expectation value 
associated with a particular state, multiplied by the statistical probability of that particular 
state.

The expectation value of the system in the kth sub-state is:The expectation value of the system in the kt sub state is:
Therefore, the average expectation value over the entire ensemble of sub-states is:

The important result is that the average expectation value can be obtained from the 
average density matrix in exactly the same fashion as the expectation value of a single spin average density matrix in exactly the same fashion as the expectation value of a single spin 
was obtained from its density matrix (see Eq. 6.9). 



As an example consider the wavefunction for a spin that is oriented at an angle θ and φ in 
polar coordinates:

h  d   f  h   The density matrix for this state is:

The expectation value for Sx is:

If the spin is oriented such that its magnetic moment is along the x-axis, then θ = 90, and 
φ = 0  The expectation value of Sx is then                                            as expected:φ  0. The expectation value of Sx is then,                                           as expected:

Calculation of the expectation value of Sy for this example yields <Sy >= 0.



6.2 One-pulse Experiment: Density Matrix Description

The density matrix that describes an ensemble of spins at thermal equilibrium, or ρo, is 
required. This density matrix should reflect the fact that the average value of < Sx > and < 
S > are zero  and it should also reflect the population difference between the ground and Sy > are zero, and it should also reflect the population difference between the ground and 
the excited state at thermal equilibrium. 

The population difference at thermal equilibrium is given by the Boltzmann distribution:

Using the Boltzmann distribution as an operator gives the desired form of the density 
matrix. A single element of the density matrix is:

And the entire density matrix is:



Expanding the exponential as a series and taking only the first term (ea ≈ 1 + a) we find:

Where

One can see that this matrix is composed of the unit matrix plus Sz.  Since the unit 
 h   ff    f h   b bl      1  F h  matrix has no effect on any of the common observables we can ignore it 1. Furthermore, 

since we are only interested in the changes in the amplitudes and the time evolution of the 
individual elements of the density matrix, we can also ignore constants. Therefore, the 
density operator for a system under thermal equilibrium can be written:density operator for a system under thermal equilibrium can be written:

T  i lif  h  l l i   f h    b  d f  h  i  i  h  To simplify the calculations even further,  can be removed from the expression using the 
following representation of angular momentum operators: Thus, ρo is equal to the matrix Iz.

6.2.1 Effect of Pulses on the Density matrix

The density matrix after this pulse is given by:The density matrix after this pulse is given by:



If we calculate the expectation value of Sx, Sy, and Sz for this density matrix, we
find:

< Sx > =  0;    < Sy > =  −1 ;     < Sz > =  0            (6.34)y

Note that the off-diagonal elements of the density matrix after the pulse are clearly 
non-zero. This implies that the ensemble average of this element of the density matrix is 
non-zero  Therefore  after the pulse  the distribution of the spins about the z-axis is no non zero. Therefore, after the pulse, the distribution of the spins about the z axis is no 
longer random - a preferred direction of the spins has been induced by the pulse. 
Specifically, the ensemble of spins has become coherent, with each spin having the same 
value of φ (compare to Eq. 6.24).

6.2.1.1 Free Precession: Time evolution of the Density Matrix


