
Chapter 6    THE DENSITY MATRIX & PRODUCT OPERATORS

The system at the beginning of the experiment:

A  h  d f h  NMR i   At the end of the NMR experiment:  

Regardless of the change in the coefficients, it is possible to calculate the expectation 
value of any observable. For example  the signal detected in the real channel of the receiver  value of any observable. For example, the signal detected in the real channel of the receiver, 
Sx, is given by:

However, in most NMR experiments, the detected signal arises from an ensemble of N spins, p g p
therefore, the average expectation value of Sx is the actual observable:

Thi  bl    b  bt i d i   f t   Th  fi t th d i l  This ensemble average can be obtained in one of two ways. The first method involves 
calculating the evolution of all N wavefunctions through the experiment and then averaging 
over all N spins. This procedure is very tedious. The second method use density matrix 
approach, which is more concise and manipulatable.approach, which is more concise and manipulatable.

The density matrix is a matrix whose elements contain information on the average
probability of all possible states of the ensemble. Instead of following the evolution of
th  diff t f ti th h th  i t  th  l ti  f th  d it  t ithe different wavefunctions through the experiment, the evolution of the density matrix
is followed. At the end of the experiment, the average expectation values are obtained
from the final density matrix. The close correspondence between the wavefunction
and the density matrix is illustrated below:and the dens ty matr x s llustrated below



6.1 Introduction to the Density Matrix
The information on the ensemble average of a system is contained in the ensemble 

average of the pairwise products of the coefficient that are associated with the basis 
vectors, for example:

Therefore, if we specified the value of:                      for all possible values of i and j, 
then the properties of the system are completely determined  The density matrix  ρ  then the properties of the system are completely determined. The density matrix, ρ, 
consists of all such products. 

The mth, nth element of the density matrix (ρmn) for an arbitrary, time-dependent, 
wavefunction is obtained as follows:

For a system with two basis vectors the density matrix is:                                        (6.7)

Th  i  l  f h  d i  i   d fi d b  E  6 6  f h   f  The matrix elements of the density matrix, as defined by Eq. 6.6 are of the same form 
as the matrix elements of an operator. Hence the density matrix is an operator, and will be 
transformed by rotations with the same rules as any other operator: 

6 1 1 C l l i  f E i  V l  F  6.1.1 Calculation of Expectation Values From ρ
The expectation value for an observable:

(The trace of a matrix is simply the sum of its diagonal elements)p y g
IF we know the density matrix of the system at anytime we can easily calculate the 

expectation values of an operator from that density matrix. E.g. The signal detected for the 
real dat channel would be:



6.1.2 Density Matrix for a Statistical Mixture
For the case of a single isolated spin, representation of the system by either its 

wavefunction or density matrix are essentially equivalent and equally tedious. However, if 
h    l  f  h  h  l   f l l    l there is a statistical mixture of states, such as the large number of molecules in a typical 

NMR sample, the density matrix is much more convenient. For an ensemble of spins, the total 
state of the system is given by:

where pk is the statistical probability of finding a spin in a particular state. pk is the fraction 
of the kth mixed state or sub-system in the sample, and ψk corresponds to the wavefunction
for that sub-system. Each ψk is a linear combination of the basis functions:

h  k  h  l  h l b b l  d h where ck
i are the normal quantum mechanical probabilities associated with 

finding the wavefunction in the ith state. The expectation value of any operator, A, for the 
kth sub-system is: 

The average value of this observable for the entire system is the expectation value The average value of this observable for the entire system is the expectation value 
associated with a particular state, multiplied by the statistical probability of that particular 
state.

The expectation value of the system in the kth sub-state is:The expectation value of the system in the kt sub state is:
Therefore, the average expectation value over the entire ensemble of sub-states is:

The important result is that the average expectation value can be obtained from the 
average density matrix in exactly the same fashion as the expectation value of a single spin average density matrix in exactly the same fashion as the expectation value of a single spin 
was obtained from its density matrix (see Eq. 6.9). 



As an example consider the wavefunction for a spin that is oriented at an angle θ and φ in 
polar coordinates:

h  d   f  h   The density matrix for this state is:

The expectation value for Sx is:

If the spin is oriented such that its magnetic moment is along the x-axis, then θ = 90, and 
φ = 0  The expectation value of Sx is then                                            as expected:φ  0. The expectation value of Sx is then,                                           as expected:

Calculation of the expectation value of Sy for this example yields <Sy >= 0.



6.2 One-pulse Experiment: Density Matrix Description

The density matrix that describes an ensemble of spins at thermal equilibrium, or ρo, is 
required. This density matrix should reflect the fact that the average value of < Sx > and < 
S > are zero  and it should also reflect the population difference between the ground and Sy > are zero, and it should also reflect the population difference between the ground and 
the excited state at thermal equilibrium. 

The population difference at thermal equilibrium is given by the Boltzmann distribution:

Using the Boltzmann distribution as an operator gives the desired form of the density 
matrix. A single element of the density matrix is:

And the entire density matrix is:



Expanding the exponential as a series and taking only the first term (ea ≈ 1 + a) we find:

Where

One can see that this matrix is composed of the unit matrix plus Sz.  Since the unit 
 h   ff    f h   b bl      1  F h  matrix has no effect on any of the common observables we can ignore it 1. Furthermore, 

since we are only interested in the changes in the amplitudes and the time evolution of the 
individual elements of the density matrix, we can also ignore constants. Therefore, the 
density operator for a system under thermal equilibrium can be written:density operator for a system under thermal equilibrium can be written:

T  i lif  h  l l i   f h    b  d f  h  i  i  h  To simplify the calculations even further,  can be removed from the expression using the 
following representation of angular momentum operators: Thus, ρo is equal to the matrix Iz.

6.2.1 Effect of Pulses on the Density matrix

The density matrix after this pulse is given by:The density matrix after this pulse is given by:



If we calculate the expectation value of Sx, Sy, and Sz for this density matrix, we
find:

< Sx > =  0;    < Sy > =  −1 ;     < Sz > =  0            (6.34)y

Note that the off-diagonal elements of the density matrix after the pulse are clearly 
non-zero. This implies that the ensemble average of this element of the density matrix is 
non-zero  Therefore  after the pulse  the distribution of the spins about the z-axis is no non zero. Therefore, after the pulse, the distribution of the spins about the z axis is no 
longer random - a preferred direction of the spins has been induced by the pulse. 
Specifically, the ensemble of spins has become coherent, with each spin having the same 
value of φ (compare to Eq. 6.24).

6.2.1.1 Free Precession: Time evolution of the Density Matrix
The time evolution of any wavefunction is defined by the evolution operator:   

Ψ(t) = e−iHt/ħΨ(0)Ψ(t) = e iHt/ħΨ(0)
Comparing this equation to the rotation operator for z-rotations:
shows that the evolution of the spins under free precession is equivalent to rotation of the 
system about the z-axis with a rotation angle equal to ωst. The time evolution of the density y g q s f y
matrix formed after the 90◦x pulse is:

Conversion of eiωStIz to its matrix form is simple since the basis vectors are eigenvalues
of Iz. Therefore, we can directly write:, y



This density matrix represents a spin precessing clockwise in the x-y plane at an angular
velocity of ω  beginning from the minus y axisvelocity of ωs, beginning from the minus y-axis.

6.2.1.2 Detection of the Signal
Quadrature detection of the FID is defined as measuring I+ = Ix + iIy. In matrix
t ti  I+ inotation I+ is:

The expectation value of I+ is given by the trace of I+ρ (ignoring constants):

The Fourier transform of this function will give a dispersion lineshape found at ωS. This 
result is completely consistent with a classical description of the effect of a 90◦ pulse 
applied along the x-axis, and detection such that the real channel is defined to be along the 
x-axis and the imaginary channel along the y-axis.



6.3 Product Operators

From the above analysis of a one-pulse experiment we see that it is possible to write ρ as a 
matrix that is proportional to one  or more  angular momentum operators:matrix that is proportional to one, or more, angular momentum operators:

• The initial density matrix, ρo, is proportional to Sz.
• The density matrix after the pulse, ρ1, is proportional to Sy.
• The density matrix during detection is given by a combination of Sy and Sx.

This representation of the density matrix also provide a good deal of intuition to the 
quantum mechanical description of the system. For example, prior to the pulse, the bulk 
magnetization is aligned along the z-axis. After the 90◦ pulse on the x-axis, the 
magnetization is along the y axis  During detection  the bulk magnetization will precess in the magnetization is along the y-axis. During detection, the bulk magnetization will precess in the 
transverse plane. However, such representation can be quite cumbersome.

The use of Cartesian angular momentum operators to represent the density matrix is 
referred to as the product operator notation  The origin of this name will become apparent referred to as the product operator notation. The origin of this name will become apparent 
when two coupled spins are analyzed, as products of angular momentum operators will be 
required to describe the density matrix.
(Ref: O.W. Sorensen, G.W. Eich, M.H. Levitt, G. Bodenhausen, and R.R. Ernst. Product 

f li  f  h  d i i  f NMR l  i  P  i  N l  operator-formalism for the description of NMR pulse experiments. Progress in Nuclear 
Magnetic Resonance Spectroscopy, 16:163–192, 1983.)

For a single isolated spin  it is possible to represent any density matrix using aFor a single isolated spin, it is possible to represent any density matrix using a
linear combination of the following four operators:    ˜1,  Ix,   Iy,   Iz
where˜1 is the identity operator.

Although the use of product operators provides a very convenient and concise algebraicg p p p y g
representation of the density matrix, keep in mind that the various angular
momentum operators simply represent the density matrix.



6.3.1 Transformation Properties of Product Operators

Since the density matrix can be represented by angular momentum operators, the effects 
of pulses and free precession on the density matrix can be determined by evaluating the of pulses and free precession on the density matrix can be determined by evaluating the 
effect of rotations on the angular momentum operators. In this context, pulses are 
represented by rotations about the x- or y-axis with a rotational angle equal to the flip angle 
of the pulse (β). Similarly, free precession is represented by a rotation about the z-axis with 
an angle ωt. The evolution of the density matrix due to rotations about the x-, y-, or z-axis 
are given in Table 6.1 and illustrated in Fig. 6.3.

These rotations follow the right-hand rule. In general, rotation of a product operator 
about an orthogonal axis gives the original product operator times cosβ plus the other about an orthogonal axis gives the original product operator times cosβ plus the other 
orthogonal product operator, times sinβ. For example, a z-rotation applied to ρ = Ix
generates the following:

These transformation laws are exactly as one would predict from the classical description 
of the system. For example, a 45◦ pulse applied along the y-axis would leave the bulk 
magnetic moment half-way between the z- and x-axis with a observed magnetic moment in 
the z-direction of cos(45◦) and the observed magnetic moment in the x-axis of sin(45◦)the z direction of cos(45 ) and the observed magnetic moment in the x axis of sin(45 ).

Figure 6 3 Evolution of single-spin product Figure 6.3 Evolution of single spin product 
operators. A graphical representation of the 
effect of chemical shift evolution (rotation 
about the z-axis) and pulses on the single-spin 
d i  i  i hdensity matrix isshown.



Table 6.1. Transformation of product operators for a single spin. Excitation pulses are 
represented as rotations about the x-axis (Rx) or the y-axis (Ry), with a flip angle of β. 
Evolution of the system under the static magnetic field, Bo, is represented by a rotation 
about the z axis (Rz)  with an overall rotation angle of ωt  In all cases  a right handed about the z-axis (Rz), with an overall rotation angle of ωt. In all cases, a right-handed 
rotation is used. The actual direction of evolution can be either clockwise or counter-
clockwise, depending on the sign of γ.

6.3.2 Description of the One-pulse Experiment
The product operator notation shown in Table 6.1 permits the rapid evaluation of the 

outcome of NMR experiments. The simple one-pulse experiment, consisting of a 90◦ degree outcome of NMR experiments. The simple one pulse experiment, consisting of a 90 degree 
pulse along the x-axis, is evaluated as follows:

The observed signal is obtained in the usual fashion:

Figure 6.4. One-pulse expt, representation by the density matrix and product operators



6.3.3 Evaluation of Composite Pulses
Composite pulses are a series of pulses whose overall effect is to produce a specific flip 

angle with reduced sensitivity to non-ideal pulse lengths or rotation angles. For example, a 
widely used composite 180◦ (π) pulse is:widely used composite 180◦ (π) pulse is:

The effect of this pulse on magnetization beginning along the z-axis (i.e. ρo = Iz) is rapidly 
obtained as follows:

Figure 6.5 Excitation profile of 180◦ composite pulse. The effect of 
varying the flip angle of a single π pulse (dashed line) and a composite 
π pulse on the z component of the magnetization are shown (solid line)π pulse on the z-component of the magnetization are shown (solid line).

Now assume that the flip angles are set toβ < 90◦, then the final 
density matrix after this pulse is:

  I [ 2β 2β  i 2β]  I [ β i β 2β  i β β]  I [ β i 2β]ρ = Iz[cos2β cos2β − sin2β] − Iy[cosβsinβcos2β + sinβcosβ] + Ix[cosβsin2β]

The composite pulse is capable of inverting the magnetization over a much wider range 
of flip angles and is thus less affected by pulse imperfection i.e. β ≠ 90◦.of flip angles and is thus less affected by pulse imperfection i.e. β ≠ 90 .
It can be shown that the composite pulse is also less sensitive to these resonance
offset effects and is able to invert the magnetization over a wider frequency range than 
a simple π pulse.



Chapter 7    SCALAR COUPLING

Scalar couplings arise from spin-spin interactions that occur via bonding electrons.
Consequently  they provide information on the chemical connectivity between atoms  Consequently, they provide information on the chemical connectivity between atoms. 
Therefore, these couplings can be utilized to correlate NMR signals of atoms that are 
chemically bonded to one another, providing chemical shift assignments if the molecular 
structure is known. In particular, the scalar coupling across the peptide bond permits the 
l k  f  h    d  h  f  hblinkage of spins within one amino acid to those of its neighbors.

In addition to providing information on chemical connectivities, the sizes of three
bond scalar couplings are sensitive to the electron distribution of the intervening
b d  l  h  l   d  f   h  fbonds, consequently these couplings can provide information on the conformation
of rotatable bonds in proteins.

Scalar, or J-coupling, occurs between nuclei which are connected by chemical bonds. 
This coupling causes splitting of the spectral lines for both coupled spins by an amount J  or This coupling causes splitting of the spectral lines for both coupled spins by an amount J, or 
the coupling constant. The nomenclature that is used to
describe the coupling is as follows:       nJAB

h   f   h  b  f i i  b d   where n refers to the number of intervening bonds,  
and A and B identify the two coupled spins. For example,
the coupling constant between the amide nitrogen and 
the Cβ carbon would be written as: 2JNCβ  The value of the Cβ carbon would be written as: JNCβ . The value of 
J is usually given in Hz and is the observed frequency 
separation between the split resonance
lines of the coupled spins.



The effect of J-coupling on the spectrum depends on the frequency separation of the 
coupled spins. If the two coupled spins differ greatly in their resonance frequencies (∆ν > 
J), then the system is referred to as an AX system, where the X signifies the fact that the 

 h l h f    d ff  ll l   d ff     two chemical shifts are quite different. All coupling between different atom types, or 
heteronuclear spins, are AX couplings because of the large difference in the frequencies of 
coupled spins. Examples include, JNH, JCH, and JNC. AX couplings can be analyzed using a 
classical analysis  similar to that depicted in Fig  7 1  When two coupling spins have nearly classical analysis, similar to that depicted in Fig. 7.1. When two coupling spins have nearly 
equivalent resonance frequencies (∆ν ≤ J) then the system is referred to as an AB system. 
For example, the coupling between two Hβ protons on an amino acid is an example of an AB 
system. Accurate analysis of AB systems require a detailed quantum mechanical treatment. 
L l  h  h  l d  h  h  d l  f  h  b d Lastly, when the coupled spins have the identical resonance frequencies, the observed 
coupling disappears entirely. This is most often seen when multiple protons have equivalent 
environments, such as the three protons on a methyl group.
7 2 Basis of Scalar Coupling:  Scalar coupling arises from the interaction of the nuclear 7.2 Basis of Scalar Coupling:  Scalar coupling arises from the interaction of the nuclear 
magnetic moment with the electrons involved in the chemical bond. The nuclear spin 
polarization of one atom affects the polarization of the surrounding electrons. The electron 
polarization subsequently produces a change in the magnetic field that is sensed by the 

Table 7.1. Homonuclear and heteronuclear coupling constants. The values are 
approximate; the coupling constants will also be affected by the electronic environment of 
th  i t d i

coupled spin..

the associated spins.


