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Chapter 7    SCALAR COUPLING

Scalar couplings arise from spin-spin interactions that occur via bonding electrons.
Consequently  they provide information on the chemical connectivity between atoms  Consequently, they provide information on the chemical connectivity between atoms. 
Therefore, these couplings can be utilized to correlate NMR signals of atoms that are 
chemically bonded to one another, providing chemical shift assignments if the molecular 
structure is known. In particular, the scalar coupling across the peptide bond permits the 
l k  f  h    d  h  f  hblinkage of spins within one amino acid to those of its neighbors.

In addition to providing information on chemical connectivities, the sizes of three
bond scalar couplings are sensitive to the electron distribution of the intervening
b d  l  h  l   d  f   h  fbonds, consequently these couplings can provide information on the conformation
of rotatable bonds in proteins.

Scalar, or J-coupling, occurs between nuclei which are connected by chemical bonds. 
This coupling causes splitting of the spectral lines for both coupled spins by an amount J  or This coupling causes splitting of the spectral lines for both coupled spins by an amount J, or 
the coupling constant. The nomenclature that is used to
describe the coupling is as follows:       nJAB

h   f   h  b  f i i  b d   where n refers to the number of intervening bonds,  
and A and B identify the two coupled spins. For example,
the coupling constant between the amide nitrogen and 
the Cβ carbon would be written as: 2JNCβ  The value of the Cβ carbon would be written as: JNCβ . The value of 
J is usually given in Hz and is the observed frequency 
separation between the split resonance
lines of the coupled spins.



The effect of J-coupling on the spectrum depends on the frequency separation of the 
coupled spins. If the two coupled spins differ greatly in their resonance frequencies (∆ν > 
J), then the system is referred to as an AX system, where the X signifies the fact that the 

 h l h f    d ff  ll l   d ff     two chemical shifts are quite different. All coupling between different atom types, or 
heteronuclear spins, are AX couplings because of the large difference in the frequencies of 
coupled spins. Examples include, JNH, JCH, and JNC. AX couplings can be analyzed using a 
classical analysis  similar to that depicted in Fig  7 1  When two coupling spins have nearly classical analysis, similar to that depicted in Fig. 7.1. When two coupling spins have nearly 
equivalent resonance frequencies (∆ν ≤ J) then the system is referred to as an AB system. 
For example, the coupling between two Hβ protons on an amino acid is an example of an AB 
system. Accurate analysis of AB systems require a detailed quantum mechanical treatment. 
L l  h  h  l d  h  h  d l  f  h  b d Lastly, when the coupled spins have the identical resonance frequencies, the observed 
coupling disappears entirely. This is most often seen when multiple protons have equivalent 
environments, such as the three protons on a methyl group.
7 2 Basis of Scalar Coupling:  Scalar coupling arises from the interaction of the nuclear 7.2 Basis of Scalar Coupling:  Scalar coupling arises from the interaction of the nuclear 
magnetic moment with the electrons involved in the chemical bond. The nuclear spin 
polarization of one atom affects the polarization of the surrounding electrons. The electron 
polarization subsequently produces a change in the magnetic field that is sensed by the 

Table 7.1. Homonuclear and heteronuclear coupling constants. The values are 
approximate; the coupling constants will also be affected by the electronic environment of 
th  i t d i

coupled spin..

the associated spins.



The strength of the J-coupling depends on several factors, including the gyromagnetic
ratio of the coupled spins, the number of bonds connecting the coupled spins, and the 
conformation of the intervening bonds in the case of multiple bond couplings.

In the case of multiple bond couplings, the conformation of the coupled atoms affects 
the coupling constant. For example, the three bond proton-proton coupling in the H-C-C-H 
group ranges from 2 to 14 Hz. The relationship between the coupling constant and the 

l l   d b  h  l l htorsional angle is represented by the Karplus relationship:
J  =  Acos2θ + Bcosθ + C            where A, B and C are empirical constants. 

For example, the φ angle in the peptide bond affects the strength of the coupling 
between the amide proton and the alpha proton  as illustrated in Fig  7 2between the amide proton and the alpha proton, as illustrated in Fig. 7.2.

Figure 7.2 Karplus curve for a peptide group. The 
relationship between J and the φ torsional angle in 
polypeptides is shown. The φ angles for regular polypeptides is shown. The φ angles for regular 
secondary structures are indicated by the vertical 
gray bars. The φ torsional angle is defined by the 
relative orientation of the H-N bond vector to the 
C CO b d t  Th  l l  f t t  th  Cα-CO bond vector. The molecular fragment to the 
right of the plot has a φ angle of 180◦.

J = 6.98 cos2(φ−60)−1.38 cos(φ−60) + 1.72
(Karplus equation)(Karplus equation)

7.2.1 Coupling to Multiple Spins

The coupling between a carbon and a hydrogen in a 13C-H group results in the splitting of 
both the proton and carbon spectral line by an amount J Hz  If the carbon atom is both the proton and carbon spectral line by an amount JCH Hz. If the carbon atom is 
coupled to more than one equivalent proton1, such as in a 13CH2 or 13CH3 group, then a more 
complex splitting pattern is observed.



Figure 7.4 Analysis of J-coupling 
using Pascal’s triangle.g g

Figure 7.3. Scalar coupling to multiple equivalent protons. The intensity of each line 
depends on the number of molecules in the sample with a particular spin state; a 1:2:1 ratio 
will be found for two coupled protons and a 1:3:3:1 ratio is found for three coupled protons.

In cases where an atom is coupled to two different, or non-equivalent, spins, then the 
couplings are treated independently. For example, the carbonyl carbon is coupled to both 
the amide nitrogen (1JNC’ ≈ 12 Hz) as well as the alpha carbon, (1JC’Cα ≈ 55 Hz), consequently 
the spectral line from the carbonyl will be a quartet, showing both couplings.
Fi  7 5 S l  plin  t  n n i l nt spins  Th  Figure 7.5 Scalar coupling to nonequivalent spins. The 
spectrum of a carbonyl carbon is shown. A quartet is 
observed because the coupling to the alpha carbon 
(JCCα) is larger than the two bond coupling to the ( CCα) g p g
nitrogen (JNC). Since these four states are equally 
likely, the ratio of the intensities of the lines in the 
quartet are 1:1:1:1.



7.3 Quantum Mechanical Description

The Hamiltonian that describes scalar coupling between spins is given by:
The scalar coupling is represented by a tensor quantity which will be diagonal inThe scalar coupling is represented by a tensor quantity which will be diagonal in

some coordinate frame:

But isotropic rotation in solution 

So that J is a scalar quantity     

7.3.1 Analysis of an AX System

The dot product,           expands to:      I · S = IxSx + IySy + IzSz

In general, it would be necessary to use the complete expression for the dot product 
when analyzing the effect of the coupling on the energy states. However, if the frequency 
difference between the coupled spins is larger than the J-coupling, as is the case in an AX 
spin-system, then terms involving transverse operators can be dropped. This leads to a 
simplified representation of the Hamiltonian for a pair of coupled spins:

H  =  −ωIIz − ωSSz + 2πJIzSz or in frequency units:      H = −νIIz − νSSz + JIzSz

Before using this Hamiltonian to calculate the energy levels of the system it is 
necessary to write expressions for the basis states of the system. Four new states are 

d b  ki  ll ibl  bi i  f h  i i l b i   h   generated by taking all possible combinations of the original basis vectors that were 
associated with each spin. These states are:

Th s  v functi ns r  i nfuncti ns f th  unc upl d H milt ni n  Th  first These wavefunctions are eigenfunctions of the uncoupled Hamiltonian. The first 
character (α or β) refers to the I spin while the second character refers to the S spin. In 
both cases α is associated with an mz of +1/2, and β is associated with an mz of -1/2



For example, |αβ > is a wavefunction in which the I spin has an mz value of +1/2 and the S 
spin has an mz value of -1/2. The four basis states form an ortho-normal basis set, e.g. 
< αα|αα >= 1, <αα|αβ >= 0.

h   f h f h    l l d d l  f  h  l  The energy of each of these states is calculated directly from the Hamiltonian 
(H|Ψ >= EΨ|Ψ >):

H|φ1 > = (−νI/2 − νS/2 + J/4)|αα >;                   H|φ2 > = (+νI/2 − νS/2 − J/4)|βα >
H|φ3 > = (−νI/2 + νS/2 − J/4)|αβ > ;                 H|φ4 > = (+νI/2 + νS/2 + J/4)|ββ >H|φ3 > = ( νI/2 + νS/2  J/4)|αβ > ;                 H|φ4 > = (+νI/2 + νS/2 + J/4)|ββ >

The four energy levels are illustrated in Fig. 7.6. Six different transitions are possible 
with this system. Of the six possible transitions, the following four are observable with 
equal intensity  (Single quantum transition)  with the indicated energies:       equal intensity, (Single quantum transition)  with the indicated energies:       

E1→2 = νI − J/2;         E1→3 = νS − J/2;        E2→4 = νS + J/2;         E3→4 = νI + J/2.

These transitions represent a normal 1D NMR spectrum between two coupled spins. p p p p
In addition to the above single quantum transitions there is also a double quantum 

transition: Eαα→ββ = ωI + ωS, and a zero quantum transition: Eαβ→βα = ωI − ωS, neither of 
which are directly observable since they involve an overall change in mz of ±2 or zero.

Figure 7.6. Energy levels and resultant spectrum for two coupled spins. 



7.3.2 Analysis of an AB system

Figure 7.7 Effect of frequency separation on 
observed J-coupling. Simulated spectra are 
shown to illustrate the collapse of observed w u p f
coupling as ∆ν becomes smaller than J. The J-
coupling constant is 10 Hz, and the separation 
between the lines is decreased from 100 Hz 
(b tt  s t ) t  0 H  (t  s t )(bottom spectrum) to 0 Hz (top spectrum).

7.4 Decoupling
Scalar coupling leads to splitting of spectra lines and therefore reduces the signal to-Scalar coupling leads to splitting of spectra lines and therefore reduces the signal to-

noise in the spectrum by spreading the intensity over all of the peaks in the multiplet. This 
loss in signal-to-noise can be restored by collapsing the multiplet to a single line by 
decoupling. Since the splitting arises from the influence of the magnetic state of one spin 
on the other, decoupling can be accomplished by simply inverting the spin-state of the 
coupled partner during detection. For example, in the case of a 13CH group, if the carbon 
magnetization is inverted rapidly, the protons in the sample no longer sense two distinct 
carbon spin-states  but a single averaged state  One way of achieving this inversion is to carbon spin states, but a single averaged state. One way of achieving this inversion is to 
simply apply a train of 180◦ pulses to the carbon, as illustrated in Fig. 7.8. More effective 
decoupling is obtained as the rate of inversion is increased by reducing both the inter-
pulse spacing and the 180◦ pulse length.



7.4.1 Experimental Implementation of Decouplingp p p g
Figure 7.8. Averaging of spin states during decoupling. A series of π pulses can average 

spin states, removing the effects of spin-spin scalar coupling on the NMR spectrum 
(decoupling). The upper part of the figure shows the precession of a single proton in a CH or 
NH group  The lower segment shows a train of π pulses that are applied to the NH group. The lower segment shows a train of π pulses that are applied to the 
heteronuclear spin (13C or 15N). The black vertical arrows represent the spins state of the 
heteronuclear spin. The proton originally precesses in a clockwise direction. Inversion of the 
heteronuclear spin reverses the direction. If the inter-pulse delay is small compared to the p p y p
J-coupling, the proton simply oscillates around the y-axis without undergoing any evolution 
due to J-coupling. Consequently its position in the spectrum is defined solely by its chemical 
shift and no splitting of the line occurs.



7.4.2 Decoupling Methods

Due to resonance off-set effects, the simple inversion of the coupled partner by the 
application of 180◦ pulses is very ineffective if the resonance frequency of the decoupled 
spin differs from the carrier frequency. Because of the wide frequency range of 13C and 
15N spins it has been necessary to design more elaborate pulse sequences for decoupling of 
these nucleithese nuclei.

The three commonly used decoupling schemes for isolated H-C and H-N spins are MLEV-
16, WALTZ-16, and GARP-1. These schemes are usually provided with the software that 
accompanies the spectrometer or are easily programmed with the pulse program software. p p y p g p p g
A detailed description of the development and properties of these schemes can be found in 
Freeman [56]. MLEV-16 is an early decoupling scheme whose properties are inferior to 
WALTZ and GARP and is only included here for purposes   of comparison.

The schemes that have been designed for the decoupling of scalar coupled spins consist The schemes that have been designed for the decoupling of scalar coupled spins consist 
of a collection of three related schemes: DIPSI-1, DIPSI-2, and DIPSI-3 (Decoupling In 
the Presense of Scalar Interations) (Table 7.3). The three DIPSI sequences differ in the 
length of the fundamental rotation operator (see below) to accommodate timing limitations g p ( ) g
that Scalar Coupling 147 may occur in pulse sequences. DIPSI-1 is the shortest sequence 
and comparable to WALTZ-16 in overall length. 

Each of these decoupling schemes are composed of a fundamental rotation operator, R, 
which is applied with various phases during decoupling  Each rotation operator  R  can be which is applied with various phases during decoupling. Each rotation operator, R, can be 
considered to be equivalent to a 180◦ pulse, causing inversion of the decoupled spin. In these 
decoupling schemes the rotation operators have been designed to be insensitive to 
resonance offset effects. The MLEV rotation operator is one of the simplest; a composite p p p
180◦ pulse (Sec 6.3.3) or



The different rotational operators associated with each decoupling scheme is shown in 
Table 7.3. Additional insensitivity to resonance offset effects is obtained by forming a four 
element cycle of the basic rotation operator:  

h       h   f   h   f E  d  d l  l  Where     is the inversion of R. In the case of MLEV and WALTZ decoupling, cyclic 
permutations of this basic cycle are combined to give a 16 step super-cycle,

which further compensates for resonance offset effects  The number of R elements in the which further compensates for resonance-offset effects. The number of R elements in the 
super-cycle are often indicated in name of the decoupling scheme, e.g. 

MLEV-4  

Table 7.3. Decoupling schemes. The R element is the basic rotation operator that is used to 
form the            decoupling element. Pulse angles and phases are indicated. In the case of 
DIPSI and GARP decoupling  the pulses are along the x-axis or along the minus x-axis if the DIPSI and GARP decoupling, the pulses are along the x axis or along the minus x axis if the 
angle is overlined. Angles are given in degrees. The figure of merit, Ξ, for each sequence is 
also provided. Finally, the quality of the decoupling is indicated by the residual line 
broadening; higher quality sequences have a smaller residual line broadening.



7.4.3 Performance of Decoupling Schemes
The frequency range over which the decoupling is effective is characterized by the 

bandwidth. Empirically, decoupling is considered to be effective if the intensity of the p y, p g y
collapsed multiplet has at least 80% of the intensity of the fully decoupled signal. The 
bandwidth can be increased by using shorter pulses in the decoupling sequence. However, 
the additional power will cause sample heating, and in extreme cases can lead to equipment 
failure  Since the decoupling bandwidth is proportional to the field strength of the failure. Since the decoupling bandwidth is proportional to the field strength of the 
decoupling pulses, it is convenient to define a figure of merit, Ξ,  as:

Where ∆F is the region over which the decoupling is effective (in Hz), and γB is the 
strength of the decoupling field (in units of rad/sec)  Schemes that have a higher figure of strength of the decoupling field (in units of rad/sec). Schemes that have a higher figure of 
merit can decouple a larger bandwidth for the same amount of RF power.

The Ξ values for MLEV-16, WALTZ-16, DIPSI-n, and GARP-1 decoupling are shown in 
Table 7 3  MLEV 16 has the smallest bandwidth while WALTZ 16 has a slightly larger Table 7.3. MLEV-16 has the smallest bandwidth while WALTZ-16 has a slightly larger 
bandwidth, but the quality of the decoupling is much higher (see below). GARP-1 has the 
largest bandwidth of the three schemes, but is of lower quality than WALTZ-16. The 
bandwidths of the DIPSI-n sequences depend on the length of the sequence with DIPSI-3 q p g q
providing the largest bandwidth of the three. However, its bandwidth is still smaller than 
that of WALTZ-16. 

In addition to differing in bandwidth, decoupling schemes also differ in the amount of 
residual coupling that remains in effect in the presence of the decoupling  The residual residual coupling that remains in effect in the presence of the decoupling. The residual 
coupling will increase the apparent linewidth of the unresolved multiplet, causing a decrease 
the intensity of the observed peak. The amount of residual coupling depends on the 
decoupling scheme. WALTZ-16 has a much smaller residual bandwidth than GARP or MLEV-p g
16, and therefore gives high quality decoupling. Of the DIPSI decoupling schemes, DIPSI-3 
produces excellent decoupling in the case of scalar coupled systems, out-performing 
WALTZ-16. 



7.4.3 Performance of Decoupling Schemes

Figure 7.10. Bandwidth of WALTZ and GARP decoupling. A series of NMR spectra of a 
single amide proton, attached to an 15N spin, are shown for different decoupler frequencies. 
The decoupler frequency is given relative to the frequency of the 15N resonance. This 
frequency was varied in 500 Hz steps  ranging from 7000 Hz below (left) to 7000 Hz above frequency was varied in 500 Hz steps, ranging from 7000 Hz below (left) to 7000 Hz above 
the nitrogen frequency (right). In this illustration the bandwidth of the WALTZ decoupling 
is 4 kHz, while that for GARP decoupling is 11 kHz. In the case of GARP decoupling, the 
height of the proton lines are not uniform within the bandwidth due to a variation in the g p
residual decoupling that depends on the frequency offset. In contrast, the height of the 
lines for WALTZ decoupling are uniform, indicating a small dependence of the residual 
coupling on the frequency offset.





Chapter 8   COUPLED SPINS: DENSITY MATRIX AND PRODUCT OPERATOR 
FORMALISM

In the previous chapter the coupling between two spins was analyzed using the In the previous chapter the coupling between two spins was analyzed using the 
wavefunctions associated with each of the quantum states. This type of analysis is quite 
satisfactory for determining the appearance of the one-dimensional NMR spectrum of the 
coupled spins. However, this approach is completely impractical for calculations on an 

bl  f  h   b   l l   l   l N   ensemble of spins that are subject to multiple excitation pulses in typical NMR experiments. 
Consequently, we return to the density matrix to analyze the evolution of the coupled spins. 
In this analysis we will only assume weak coupling, of the AX kind. This assumption is not a 
severe restriction since heteronuclear couplings  such as between protons and carbon or severe restriction since heteronuclear couplings, such as between protons and carbon or 
carbon and nitrogen, are those that are used for magnetization transfer by various NMR 
experiments.

8 1 Density Matrix for Two Coupled Spins8.1 Density Matrix for Two Coupled Spins
For two coupled spins the wavefunctions are a linear combination of the four basis

vectors:      Ψ = c1|αα > + c2|αβ > + c3|βα > + c4|ββ > 
and the density matrix is now a 4x4 matrix:y



Each of the 16 elements in this density matrix provides  information on various states 
of the system. The nature  of the information contained in each element can be identified 
f    l  d  h  l  from its time evolution under the Hamiltonian. 
This time dependence is given by:

Or in frequency unit:

For two coupled spins, the individual elements of the density matrix will evolve with the 
frequencies given in Table 8 1  For example  given an initial value of c c (t = 0)  the values frequencies given in Table 8.1. For example, given an initial value of c1c 3(t = 0), the values 
of this element of the density matrix at some future time is:

c1c 3(t)  =  ei(ωI−πJ)tc1c 3(t = 0) 

Table 8.1. Time evolution of the elements of the density matrix. The frequency at which an 
element of the density matrix evolves is indicated. The row indicates the ground state and 
the column indicates the excited state. For example, the element of the density matrix 
that represents the double quantum transition from the αα ground state to the ββ double 
quantum state will evolve at a frequency of ω = ωI + ωS.



The 16 elements of the density matrix can be divided into four distinct groups. The four 
diagonal elements, cic i , do not evolve with time and therefore refer to the population of the 
ψi state. The off-diagonal elements indicate the presence of coherently excited states or ψi g p y
transitions. These transitions can be divided into zero quantum, single quantum, and double 
quantum transitions: 

Zero quantum transitions, or coherences, are those whose frequency is given by the  q , , q y g y
difference in the resonance frequency between the I and S spins (Flip-flop). These 
transitions connect the αβ and βα states. Zero quantum transitions correspond to spin-
spin flips, or an interchange of mz values. There is no net change in the overall quantum 
number  The zero quantum transitions are indicated as Ω and Ω in Fig  8 1number. The zero-quantum transitions are indicated as Ω23 and Ω32 in Fig. 8.1.
Single quantum transitions, or coherences, change mz for one of the two spins (Flip).  
These transitions form the outer set of arrows in Fig. 8.1.
Double quantum transitions or coherences  involve a change in m for both spins (FlopDouble quantum transitions, or coherences, involve a change in mz for both spins (Flop-
flop). The two double quantum transitions connect the ββ state to the αα state.

8.2 Product Operator Representation of the Density Matrixp p y
In the case of a single spin it was possible to describe the density matrix in terms of a 

group of four product operators:    E, Ix, Iy and Iz.  
For two uncoupled spins, I and S, we can also write two sets of product operators that p p p p

can be used to represent the density matrices associated with the two spins:
E,   Ix, Iy,  Iz,  Sx,  Sy and Sz. 

However, these set of seven density matrices will not be sufficient to describe a coupled 
t  b  th  H ilt i  f  th  l  li  i  th  d t f t  t   system because the Hamiltonian for the scalar coupling is the product of two operators:  



A closed group of product operators that can be used to describe any arbitrary density
matrix for two coupled spins is generated by taking all possible products of the single
spin operators. This forms a set of 16 product operators: 

The matrix form of these density matrices is found 
by forming the tensor or direct product between pairs 
of single-spin 2x2 matrices  This is equivalent to taking of single spin 2x2 matrices. This is equivalent to taking 
all possible combinations of the elements in each 2x2 matrix. The direct product of two 
single spin operators is calculated as follows. 

Consider two operators  OA and OB:Consider two operators, OA and OB:

Then the direct product of the two operators,                   is obtained as follows:

A  i  f   b  bi d  i  h  l  di  d  F  lAny pair of operators can be combined to give the resultant direct product. For example:

Single spin operators can also be written in the same representation as the two coupled
spins by taking the direct product with the identity matrix:



Table 8.2. The complete set of 16 product operators

8.2.1 Detectable Elements of ρ
The density matrix contains information on populations  zero quantum  single quantum  The density matrix contains information on populations, zero-quantum, single-quantum, 

and double-quantum transitions. Only a sub-set of these can be detected by the instrument. 
Quadrature detection measures Mx + iMy, or equivalently, [Ix + Sx] + i[Iy + Sy], which is equal 
to I+ + S+. Consequently, the detected signal is given by: Trace(ρ [I+ + S+]).q y, g g y (ρ [ ])

The above trace is only non-zero for the density matrices Ix, Iy, Sx, and Sy. In
addition, the density matrices represented by the lowering operators, I− and S− can also be 
detected. All other density matrices will give no detectable signal. 

H   h ll  l  h  d i  i  h  i     However, we shall see later that density matrices that contain one transverse operator 
and one longitudinal operator, for example, 2IxSz can evolve into a detectable signal due to 
J-coupling.



Whether a particular product operator representation of the density matrix can be
detected is determined by simply calculating Trace(ρ [I+ +S+]). The matrix form of
I+ and S+ are obtained by adding Ix + iIy and Sx + iSy, giving:y y

As examples, we first show that the density matrices, represented by Ix or I−, give a
detectable signal.

= 0 + 0 + 1 + 1 = 2

Signal(I−) = Trace(ρ [I+ + S+]) = Trace(I− [I+ + S+])

= 0 + 0 + 1 + 1 = 2

I  t t  th  d it  t i  t d b  I  2I S   2I S  d  t i   In contrast, the density matrices represented by I+, 2IxSz, or 2IxSy, do not give a 
detectable signal: (Not shown)



In summary, the relationships between the density matrix and the detected signals are:
1.  Density matrices that are represented by product operators consisting of one y p y p p g

transverse operator, e.g. Ix, represent single quantum transitions and yield a detectable    
signal. In the case of quadrature detection, I− and S−, are the detected signals.

2. Density matrices that are represented by product operators consisting of one transverse
 d       d l  d bl  b   l   operator and one z-operator, e.g. 2IxSz, are not directly detectable, but can evolve into 

detectable magnetization due to J-coupling. Product operators of this type represent 
undetectable single-quantum transitions.

3  Density matrices that are represented by product operators consisting entirely of z3. Density matrices that are represented by product operators consisting entirely of z-
operators, e.g. Iz, Sz, IzSz represent populations or zero quantum transitions and 
therefore cannot be detected.

4 Density matrices that represent product operators consisting of two transverse terms  4. Density matrices that represent product operators consisting of two transverse terms, 
e.g. 2IxSy, represent double quantum transitions that do not give rise to detectable 
transitions.

8 3 Density Matrix Treatment of two coupled spins in a One-pulse Experiment8.3 Density Matrix Treatment of two coupled spins in a One pulse Experiment
Example: Two coupled protons. I and S. Both spins are excited by a 90◦ pulse along the x-
axis and the resulting signal is detected after excitation. The evolution of the density 
matrix during this experiment can be represented as follows:

The excitation is a rotation of the density matrix:

During detection, the density matrix will evolve under the complete Hamiltonian, 
H  =  −ωIIz − ωSSz + 2πJIzSz,  as follows:

With the final detected signals given by:



The rotation matrix, Rx(π/2) is obtained from the single-spin rotation matrix for
an x-rotation  in a similar fashion (Both I and S spins are affected by the 90o pulse):

Evolution of the Density Matrix during Detection:y g



The final detected signal is given by Trace(ρ [I+ + S+]). To simplify the calculation, the 
signal associated with only the I spin will be calculated. We first calculate ρI+:

The trace gives the detected signal (ignoring the sign of ω):The trace gives the detected signal (ignoring the sign of ω):

The amplitude “i” simply represents a phase shift of the signal and can be ignored. The 
remaining part of the expression represents two spectral lines, centered around ωI and 
separated by a total of 2πJ rad/sec. Repeating this calculation using S+ would yield a similar 
result, with ωI replaced by ωS. The final detected signal contains four resonance lines, 
doublets at ωI and ωS  with each doublet split by J Hz:doublets at ωI and ωS, with each doublet split by J Hz:



8.4 Manipulation of Two-spin Product Operators

The above manipulations of the 4x4 density matrix are even more tedious than the 
manipulation of the simpler 2x2 density matrix for uncoupled spins  The representation of manipulation of the simpler 2x2 density matrix for uncoupled spins. The representation of 
the density matrix by a linear combination of product operators greatly simplifies the 
calculation of ρ at various positions in the NMR experiment.

Since there are now two coupled spins, we also have to determine how to apply these p p , pp y
rules to products of operators. In addition, it is also necessary to consider the effect of 
the J-coupling term in the Hamiltonian, 2πJIzSz, on the evolution of the density matrix 
under free precession. Rules for determining how the density matrix is modified by pulses 
and free precession are as follows:and free precession are as follows:

1. If operators P and Q commute (i.e. belong to different spins) , then a rotation operator
associated with one spin has no effect on the density matrix that corresponds to the  p y p
other spin. For example, a proton pulse has no effect on the density matrix that   
represents magnetization associated with carbon or nitrogen spins.

2. The one spin component of an evolving product operator can be treated separately:

For example, a 90◦x pulse, applied to both spins, gives:     2IySz → −2IzSy

3. One-spin operators (e.g. Ix), that are found as part of the rotation angle are taken as  
constants in the expression. The usual application of this rule is to evaluate the effect of 
J-coupling on evolution of the density matrix. For example, the effect of J-coupling on 
the evolution of protons (I spins) is equivalent to a rotation about the z-axis by an angle  
2πJSzt,                        e−i2πJIzSz =   e−i(2πJSzt)Iz



The difficulty with this expression is that there is now an operator, Sz, that is part
of an argument for a trigonometric function. The operators are taken out of the

  h    f  h argument using the series expansion for each term:

Similarly:

Thus: 

4. The evolution of a product of two operators under J-coupling would be evaluated using a  
combination of rule 2 and rule 3. First consider the evolution of 2IySz:

2IySz   2[Iycos(πJtSz) − Ixsin(πJtSz)] × Sz =   2[Iycos(πJt) − IxSzsin(πJt)] × Sz

=   2IySzcos(πJt) − 2IxS2
z sin(πJt)   =   2IySzcos(πJt) − Ixsin(πJt)

The product of two transverse operators is evaluated in exactly the same way:The product of two transverse operators is evaluated in exactly the same way:

2IxSy 2 [Ixcos(πJt) + 2IySzsin(πJt)]×[Sycos(πJt) − 2IzSxsin(πJt)]

It can be shown that product operators containing two transverse terms  such asIt can be shown that product operators containing two transverse terms, such as
2IxSy, do not evolve under J-coupling .



8.5. Transformations of Two-spin Product Operators:

Figure 8.2 Manipulation of the density matrices using the product operator representation. 
The left figure shows the effect of chemical shift evolution (e.g. H = ωIIz), with a rotation 
angle of ωt. The effects of pulses, with a flip angle of β degrees, are also shown on the 
middle left of the figure for pulses along the x-axis (middle), or y-axis (right). The effects 
of J-coupling on the density matrix are shown on the right of the figure  for the density of J coupling on the density matrix are shown on the right of the figure, for the density 
matrix represented by Ix (left), or Iy (right). Here, the rotation angle is πJt.

Examples:

 h   ll  h   d      l   f h   Note that in all cases the new density matrix, ρ, is a linear combination of the cosine 
weighted initial density matrix, ρi, plus the sine weighted density matrix that is advanced 
by 90◦, ρ90:
As time passes  the system will pass through all four forms of the density matrices that are As time passes, the system will pass through all four forms of the density matrices that are 
in the same plane within Fig. 8.2. 



Transverse magnetization that is associated with a single spin operator, for example Ix, is 
often referred to as in-phase magnetization. In-phase magnetization evolves under the 
influence of Jcoupling to anti-phase magnetization, 2IySz. A vector model that 

 h  l   ll d    h   h  h  h  represents this evolution is illustrated in Fig. 8.3. This representation shows why anti-phase 
magnetization cannot be detected. the individual vector components of the anti-phase 
magnetization cancel each other.

Figure 8.3. Inter-conversion of in-phase and antiphase
magnetization. In-phase magnetization, Ix, evolves 
under J-coupling to produce anti-phase magnetization, 
2I S  In this representation the vector components 2IySz. In this representation the vector components 
of the anti-phase magnetization evolve in opposite
directions because of the opposite spin states of Sz (mz = +1/2 or mz = −1/2).

8.6  Product Operator Treatment of a One-pulse Experiment

The product operator treatment of the one-pulse experiment for two coupled spins is 
similar to that utilized for a single isolated spin. As before, the NMR experiment g p , p
transforms the initial density matrix, ρo, to ρ1(t) and the final detected signal is extracted 
from the final density matrix. The only complication is that it is necessary to keep track of 
two spins, I and S. Analysis of each step of the one-pulse experiment is discussed below.

i i l P d  O   di d b    Initial Product Operator: As discussed above, ρo = Iz + Sz.
Effect of 90◦ Pulse: We assume that this is a homonuclear experiment, therefore the
pulse is applied to both spins. Assuming a perfect 90◦ pulse:      ρo → ρ1

Or                             ρo =                                                = ρ1



Free Precession: The free precession of the spins causes the density matrix to evolve
according to:

ρ1(t)  =  e−iHtρ1eiHt

The middle term is jus the evolution due to J-coupling and can be written as:

The evolution of each other terms due to chemical shift is as follow:
ρ1(t)  =  −cos(πJt) [Iycos(ωI t) − Ixsin(ωI t)] + 2Szsin(πJt) [Ixcos(ωI t) + Iysin(ωI t)]

− cos(πJt) [Sycos(ωSt) − Sxsin(ωSt)] + 2Izsin(πJt) [Sxcos(ωI t) + Sysin(ωI t)]
C ll ti  tCollecting terms:

ρ1(t)  =  −Iycos(ωI t)cos(πJt) + Ixsin(ωI t)cos(πJt) − Sycos(ωSt)cos(πJt) 
+ Sxsin(ωSt)cos(πJt) + 2IxSzcos(ωI t)sin(πJt) + 2IySzsin(ωI t)sin(πJt)
+ 2S I cos(ω t)sin(πJt) + 2S I sin(ω t)sin(πJt)+ 2SxIzcos(ωSt)sin(πJt) + 2SyIzsin(ωSt)sin(πJt)

\

Since the only density matrices that give rise to detectable signal are represented by single 
transverse operators it is necessary to only focus on the first two lines of the above 
equation. Additional simplification is obtained if the transverse operators are written in the equation. Additional simplification is obtained if the transverse operators are written in the 
form of raising and lowering operators:



Since the only components of the density matrix that gives rise to detectable signal are
I− and S−, it is only necessary to consider these two density matrices.y y y

Therefore, the detected signal is: g

The Fourier transform of             gives a single peak at ωI and the             term gives a
single peak at ω  Each of these terms in the time domain is multiplied by cos(πJt)single peak at ωS. Each of these terms in the time domain is multiplied by cos(πJt),
therefore the peaks at ωI and ωS will be convoluted with the Fourier transform of
cos(πJt), resulting in the splitting of each peak by 2πJ. This gives the normal four
line AX type spectrum, with a separation of 2πJ between each set of doublets.


