# Lecture 13 - Review

- 1. 3-hour Open book exam. No discussion among yourselves.
- 2. Simple calculations.
- 3. Terminologies.
- 4. Decriptive questions.
- 5. Analyze a pulse program using density matrix approach (Homonuclear 2D).
- 6. Analyze a pulse program using product operator approach (Heteronuclear 2D).

| List of Figures x   |                   |        | xvii                                                                          |    |  |
|---------------------|-------------------|--------|-------------------------------------------------------------------------------|----|--|
| Lis                 | List of Tables x: |        |                                                                               |    |  |
| 1. NMR SPECTROSCOPY |                   |        | CTROSCOPY                                                                     | 1  |  |
|                     | 1.1               | Introd | uction to NMR Spectroscopy                                                    | 2  |  |
|                     | 1.2               | One D  | Dimensional NMR Spectroscopy                                                  | 3  |  |
|                     |                   | 1.2.1  | Classical Description of NMR Spectroscopy                                     | 3  |  |
|                     |                   | 1.2.2  | Nuclear Spin Transitions                                                      | 3  |  |
|                     | 1.3               | Detect | tion of Nuclear Spin Transitions                                              | 7  |  |
|                     |                   | 1.3.1  | Continuous Wave NMR                                                           | 7  |  |
|                     |                   | 1.3.2  | Pulsed NMR                                                                    | 8  |  |
|                     |                   | 1.3.3  | Summary of the Process of Acquiring                                           |    |  |
|                     |                   |        | a One Dimensional Spectrum                                                    | 15 |  |
|                     | 1.4               | Pheno  | menological Description of Relaxation                                         | 16 |  |
|                     |                   | 1.4.1  | Relaxation and the Evolution of Magnetization                                 | 18 |  |
|                     | 1.5               | Chem   | ical Shielding                                                                | 19 |  |
|                     | 1.6               | Chara  | cteristic <sup>1</sup> H, <sup>13</sup> C and <sup>15</sup> N Chemical Shifts | 21 |  |
|                     |                   | 1.6.1  | Effect of Electronic Structure on Chemical Shifts                             | 21 |  |
|                     |                   | 1.6.2  | Ring Current Effects                                                          | 23 |  |
|                     |                   | 1.6.3  | Effects of Local Environment on Chemical Shifts                               | 25 |  |
|                     |                   | 1.6.4  | Use of Chemical Shifts in Resonance Assignments                               | 25 |  |
|                     |                   | 1.6.5  | Chemical Shift Dispersion & Multi-dimensional NMR                             | 26 |  |
|                     | 1.7               | Exerci | ises                                                                          | 26 |  |
|                     | 1.8               | Soluti | ons                                                                           | 26 |  |

| 2. | PRA | CTICAL  | ASPECTS OF ACQUIRING NMR SPECTRA                    | 29 |
|----|-----|---------|-----------------------------------------------------|----|
|    | 2.1 | Compor  | nents of an NMR Spectrometer                        | 29 |
|    |     | 2.1.1   | Magnet                                              | 29 |
|    |     | 2.1.2   | Computer                                            | 31 |
|    |     | 2.1.3   | Probe                                               | 31 |
|    |     | 2.1.4   | Pre-amplifier Module                                | 32 |
|    |     | 2.1.5   | The Field-frequency Lock                            | 33 |
|    |     | 2.1.6   | Shim System                                         | 34 |
|    |     | 2.1.7   | Transmitter & Pulse Generation                      | 34 |
|    |     | 2.1.8   | Receiver                                            | 36 |
|    | 2.2 | Acquir  | ing a Spectrum                                      | 38 |
|    |     | 2.2.1   | Sample Preparation                                  | 38 |
|    |     | 2.2.2   | Beginning the Experiment                            | 39 |
|    |     | 2.2.3   | Temperature Measurement                             | 39 |
|    |     | 2.2.4   | Shimming                                            | 40 |
|    |     | 2.2.5   | Tuning and Matching the Probe                       | 41 |
|    |     | 2.2.6   | Adjusting the Transmitter                           | 42 |
|    |     | 2.2.7   | Calibration of the 90° Pulse Length                 | 46 |
|    |     | 2.2.8   | Setting the Sweepwidth: Dwell Times and Filters     | 48 |
|    |     | 2.2.9   | Setting the Receiver Gain                           | 53 |
|    |     | 2.2.10  | Spectral Resolution and Acquisition Time of the FID | 54 |
|    | 2.3 | Experi  | mental 1D-pulse Sequence: Pulse and Receiver Phase  | 57 |
|    |     | 2.3.1   | Phase Cycle                                         | 58 |
|    |     | 2.3.2   | Phase Cycle and Artifact Suppression                | 61 |
|    | 2.4 | Exercis | ses                                                 | 63 |
|    | 2.5 | Solutio | ons                                                 | 64 |

| 3. | INTRODUCTION TO SIGNAL PROCESSING |                      | 65                                              |    |
|----|-----------------------------------|----------------------|-------------------------------------------------|----|
|    | 3.1                               | Removal of DC Offset |                                                 | 66 |
|    | 3.2                               | Increa               | sing Resolution by Extending the FID            | 66 |
|    |                                   | 3.2.1                | Increasing Resolution by Zero-filling           | 67 |
|    |                                   | 3.2.2                | Increasing Resolution by Linear Prediction (LP) | 69 |
|    | 3.3                               | Remo                 | val of Truncation Artifacts: Apodization        | 74 |
|    |                                   | 3.3.1                | Effect of Apodization on Resolution and Noise   | 74 |
|    |                                   | 3.3.2                | Using LP & Apodization to Increase Resolution   | 77 |
|    | 3.4                               | Solver               | nt Suppression                                  | 78 |
|    | 3.5                               | Spectr               | al Artifacts Due to Intensity Errors            | 79 |
|    |                                   | 3.5.1                | Errors from the Digital Fourier Transform       | 79 |
|    |                                   | 3.5.2                | Effect of Distorted and Missing Points          | 80 |
|    |                                   | 3.5.3                | Delayed Acquisition                             | 82 |
|    | 3.6                               | Phasin               | ng of the Spectrum                              | 82 |
|    |                                   | 3.6.1                | Origin of Phase Shifts                          | 83 |
|    |                                   | 3.6.2                | Applying Phase Corrections                      | 85 |
|    | 3.7                               | Chemi                | ical Shift Referencing                          | 86 |
|    | 3.8                               | Exerci               | ses                                             | 87 |
|    | 3.9                               | Solutio              | ons                                             | 87 |

| 4. | QUANTUM MECHANICAL DESCRIPTION OF NMR          |         |                                               | 89  |
|----|------------------------------------------------|---------|-----------------------------------------------|-----|
|    | 4.1                                            | Schrö   | dinger Equation                               | 89  |
|    |                                                | 4.1.1   | Vector Spaces and Properties of Wavefunctions | 90  |
|    |                                                | 4.1.2   | Particle in a Box                             | 92  |
|    | 4.2                                            | Expec   | tation Values                                 | 93  |
|    | 4.3                                            | Dirac   | Notation                                      | 94  |
|    |                                                | 4.3.1   | Wavefunctions in Dirac Notation               | 94  |
|    |                                                | 4.3.2   | Scalar Product in Dirac Notation              | 96  |
|    |                                                | 4.3.3   | Operators in Dirac Notation                   | 96  |
|    |                                                | 4.3.4   | Expectation Values in Dirac Notation          | 96  |
|    | 4.4                                            | Hermi   | tian Operators                                | 97  |
|    |                                                | 4.4.1   | Determining Eigenvalues                       | 97  |
|    | 4.5                                            | Additi  | onal Properties of Operators                  | 100 |
|    |                                                | 4.5.1   | Commuting Observables                         | 100 |
|    |                                                | 4.5.2   | Time Evolution of Observables                 | 100 |
|    |                                                | 4.5.3   | Trace of an Operator                          | 100 |
|    |                                                | 4.5.4   | Exponential Operator                          | 101 |
|    |                                                | 4.5.5   | Unitary Operators                             | 101 |
|    |                                                | 4.5.6   | Exponential Hermitian Operators               | 101 |
|    | 4.6 Hamiltonian and Angular Momentum Operators |         |                                               |     |
|    |                                                | for a S | Spin-1/2 Particle                             | 102 |
|    | 4.7                                            | Rotati  | ons                                           | 105 |
|    |                                                | 4.7.1   | Rotation Groups                               | 105 |
|    |                                                | 4.7.2   | Rotation Operators                            | 106 |
|    |                                                | 4.7.3   | Rotations of Wave Functions and Operators     | 109 |
|    | 4.8                                            | Exerci  | ises                                          | 112 |
|    | 4.9                                            | Soluti  | ons                                           | 112 |

| 5. QUANTUM MECHANICAL DESCRIPTION OF A ONE PULSE<br>EXPERIMENT |                                                                         | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.1                                                            | Preparation: Evolution of the System Under B <sub>o</sub>               | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.2                                                            | Excitation: Effect of Application of B <sub>1</sub>                     | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 5.2.1 The Resonance Condition                                           | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.3                                                            | Detection: Evolution of the System Under B <sub>o</sub>                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6. TH                                                          | E DENSITY MATRIX & PRODUCT OPERATORS                                    | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.1                                                            | Introduction to the Density Matrix                                      | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.1.1 Calculation of Expectation Values From $\rho$                     | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.1.2 Density Matrix for a Statistical Mixture                          | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.2                                                            | One-pulse Experiment: Density Matrix Description                        | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.2.1 Effect of Pulses on the Density matrix                            | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.3                                                            | Product Operators                                                       | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.3.1 Transformation Properties of Product Operators                    | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.3.2 Description of the One-pulse Experiment                           | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 6.3.3 Evaluation of Composite Pulses                                    | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.4                                                            | Exercises                                                               | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.5                                                            | Solutions                                                               | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                | 5. QUA<br>EXE<br>5.1<br>5.2<br>5.3<br>6. TH<br>6.1<br>6.2<br>6.3<br>6.3 | <ol> <li>QUANTUM MECHANICAL DESCRIPTION OF A ONE PULSE<br/>EXPERIMENT</li> <li>Preparation: Evolution of the System Under B<sub>o</sub></li> <li>Excitation: Effect of Application of B<sub>1</sub></li> <li>5.2.1 The Resonance Condition</li> <li>Detection: Evolution of the System Under B<sub>o</sub></li> <li>THE DENSITY MATRIX &amp; PRODUCT OPERATORS</li> <li>Introduction to the Density Matrix</li> <li>6.1.1 Calculation of Expectation Values From ρ</li> <li>6.1.2 Density Matrix for a Statistical Mixture</li> <li>One-pulse Experiment: Density Matrix Description</li> <li>Effect of Pulses on the Density matrix</li> <li>Froduct Operators</li> <li>Transformation Properties of Product Operators</li> <li>Solution of Composite Pulses</li> <li>Exercises</li> <li>Solutions</li> </ol> |

| 7. SCALAR COUPLING |                                                 | 135 |
|--------------------|-------------------------------------------------|-----|
| 7.                 | Introduction to Scalar Coupling                 | 135 |
| 7.                 | 2 Basis of Scalar Coupling                      | 136 |
|                    | 7.2.1 Coupling to Multiple Spins                | 138 |
| 7.                 | 3 Quantum Mechanical Description                | 140 |
|                    | 7.3.1 Analysis of an AX System                  | 140 |
|                    | 7.3.2 Analysis of an AB System                  | 142 |
| 7.                 | 4 Decoupling                                    | 145 |
|                    | 7.4.1 Experimental Implementation of Decoupling | 145 |
|                    | 7.4.2 Decoupling Methods                        | 146 |
|                    | 7.4.3 Performance of Decoupling Schemes         | 148 |
| 7.                 | 5 Exercises                                     | 150 |
| 7.                 | 5 Solutions                                     | 150 |

| UPLED SPINS: DENSITY MATRIX AND<br>DUCT OPERATOR FORMALISM | 153                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Density Matrix for Two Coupled Spins                       | 153                                                                                                                                                                                                                                                                                                                                                                                                               |
| Product Operator Representation of the Density Matrix      | 155                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8.2.1 Detectable Elements of $\rho$                        | 156                                                                                                                                                                                                                                                                                                                                                                                                               |
| Density Matrix Treatment of a One-pulse Experiment         | 159                                                                                                                                                                                                                                                                                                                                                                                                               |
| Manipulation of Two-spin Product Operators                 | 162                                                                                                                                                                                                                                                                                                                                                                                                               |
| Transformations of Two-spin Product Operators              | 164                                                                                                                                                                                                                                                                                                                                                                                                               |
| Product Operator Treatment of a One-pulse Experiment       | 165                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                            | UPLED SPINS: DENSITY MATRIX AND<br>DUCT OPERATOR FORMALISM<br>Density Matrix for Two Coupled Spins<br>Product Operator Representation of the Density Matrix<br>$8.2.1$ Detectable Elements of $\rho$<br>Density Matrix Treatment of a One-pulse Experiment<br>Manipulation of Two-spin Product Operators<br>Transformations of Two-spin Product Operators<br>Product Operator Treatment of a One-pulse Experiment |

| 9. | TW            | IMENSIONAL HOMONUCLEAR J-CORRELATED                 |     |  |
|----|---------------|-----------------------------------------------------|-----|--|
|    | SPECTROSCOPY  |                                                     | 169 |  |
|    | 9.1           | Multi-dimensional Experiments                       | 170 |  |
|    |               | 9.1.1 Elements of Multi-dimensional NMR Experiments | 171 |  |
|    |               | 9.1.2 Generation of Multi-dimensional NMR Spectra   | 172 |  |
|    | 9.2           | Homonuclear J-correlated Spectra                    | 173 |  |
|    |               | 9.2.1 COSY Experiment                               | 173 |  |
|    | 9.3           | Double Quantum Filtered COSY (DQF-COSY)             | 182 |  |
|    |               | 9.3.1 Product Operator Treatment of the DQF-COSY    |     |  |
|    |               | Experiment                                          | 182 |  |
|    | 9.4           | 9.4 Effect of Passive Coupling on COSY Crosspeaks   |     |  |
|    | 9.5           | Scalar Correlation by Isotropic Mixing: TOCSY       | 187 |  |
|    |               | 9.5.1 Analysis of TOCSY Pulse Sequence              | 188 |  |
|    |               | 9.5.2 Isotropic Mixing Schemes                      | 191 |  |
|    |               | 9.5.3 Time Dependence of Magnetization Transfer by  |     |  |
|    |               | Isotropic Mixing                                    | 192 |  |
|    | 9.6 Exercises |                                                     | 194 |  |
|    | 9.7           | Solutions                                           | 195 |  |

| 0. TWO DIMENSIONAL HETERONUCLEAR J-CORRELATED                       |     |  |  |
|---------------------------------------------------------------------|-----|--|--|
| SPECTROSCOPY                                                        | 197 |  |  |
| 10.1 Introduction                                                   | 197 |  |  |
| 10.2 Two Dimensional Heteronuclear NMR Experiments                  | 198 |  |  |
| 10.2.1 HMQC Experiment                                              | 199 |  |  |
| 10.2.2 HSQC Experiment                                              | 204 |  |  |
| 10.2.3 Refocused-HSQC Experiment                                    | 207 |  |  |
| 10.2.4 Comparison of HMQC, HSQC, and Refocused-HSQC                 |     |  |  |
| Experiments                                                         | 209 |  |  |
| 10.2.5 Sensitivity in 2D-Heteronuclear Experiments                  | 209 |  |  |
| 10.2.6 Behavior of XH <sub>2</sub> Systems in HSQC-type Experiments | 210 |  |  |

| 11. COHERENO  | CE EDITING: PULSED-FIELD GRADIENTS                                   |     |
|---------------|----------------------------------------------------------------------|-----|
| AND PHAS      | E CYCLING                                                            | 213 |
| 11.1 Princip  | als of Coherence Selection                                           | 214 |
| 11.1.1        | Spherical Basis Set                                                  | 214 |
| 11.1.2        | Coherence Changes in NMR Experiments                                 | 216 |
| 11.1.3        | Coherence Pathways                                                   | 218 |
| 11.2 Phase l  | Encoding With Pulsed-Field Gradients                                 | 218 |
| 11.2.1        | Gradient Coils                                                       | 218 |
| 11.2.2        | Effect of Coherence Levels                                           |     |
|               | on Gradient Induced Phase Changes                                    | 220 |
| 11.2.3        | Coherence Selection by Gradients in Heteronuclear<br>NMR Experiments | 222 |
| 11.3 Cohere   | ence Selection Using Phase Cycling                                   | 225 |
| 11.3.1        | Coherence Changes Induced by RF-Pulses                               | 226 |
| 11.3.2        | Selection of Coherence Pathways                                      | 229 |
| 11.3.3        | Phase Cycling in the HMQC Pulse Sequence                             | 233 |
| 11.4 Exercis  | ses                                                                  | 235 |
| 11.5 Solution | ons                                                                  | 235 |

| 12. QUADRATURE DETECTION IN MULTI-DIMENSIONAL          |     |  |
|--------------------------------------------------------|-----|--|
| NMR SPECTROSCOPY                                       |     |  |
| 12.1 Quadrature Detection Using TPPI                   | 240 |  |
| 12.2 Hypercomplex Method of Quadrature Detection       | 242 |  |
| 12.2.1 States-TPPI - Removal of Axial Peaks            | 243 |  |
| 12.3 Sensitivity Enhancement                           | 245 |  |
| 12.4 Echo-AntiEcho Quadrature Detection: N-P Selection | 247 |  |
| 12.4.1 Absorption Mode Lineshapes with N-P Selection   | 247 |  |
| 13. RESONANCE ASSIGNMENTS: HOMONUCLEAR METHODS         | 251 |  |
| 14. RESONANCE ASSIGNMENTS:                             |     |  |
| HETERONUCLEAR METHODS                                  |     |  |
| 15. PRACTICAL ASPECTS OF N-DIMENSIONAL DATA            | 212 |  |
| ACQUISITION AND PROCESSING                             | 313 |  |
| 16. DIPOLAR COUPLING                                   |     |  |
| 17. PROTEIN STRUCTURE DETERMINATION                    | 383 |  |
| 18. EXCHANGE PROCESSES                                 |     |  |
| 19. NUCLEAR SPIN RELAXATION AND MOLECULAR              |     |  |
| DYNAMICS                                               | 431 |  |
|                                                        |     |  |



#### Lecture 13 - Protein Structure determination by NMR



# NMR Parameters (參數) (Measurable quantities)

- 1. Chemical Shift : Difference in resonance frequency due to chemical structure difference (in ppm).
- 2. Resonance Intensity: Determine number of spins.
- 3. J-coupling: Resonance splitting due to through-bond spin coupling.
- 4. Nuclear Overhauser Effect (NOE): Energy transfer through dipolar coupling.
- 5. Residual dipolar coupling: Non-vanishing dipolar coupling in oriented media.
- 6. Relaxation rates (T<sub>1</sub>, T<sub>2</sub> etc):
   Lost of magnetization due to dephasing (T<sub>2</sub>) or energy dissipation (T<sub>1</sub>)



#### NMR Parameters

## 1. Chemical Shift

> The chemical shift of a nucleus is the difference between the resonance frequency of the nucleus and a standard, relative to the standard. This quantity is reported in ppm and is given by the symbol  $\delta$ ,

$$\delta \equiv (\omega - \omega_{REF}) \times 10^6 / \omega_{REF}$$

- Where  $\omega_{\text{REF}}$  is the reference frequency of the standard compound, i.e. the methyl resonance of tetramethylsilane (TMS) or 2,2-dimethyl-2-silapentane-5-sulfonate (DSS).
- > In this relative scale, the  $\delta$  value is independent of magnet field used. (i.e same in 100 MHz magnet (2.35 T) or in a 600 MHz magnet (14.1 T).



Chemical Shift Referencing: The <sup>1</sup>H chemical shift was referenced to 2,2-dimethyl-2-Silapentane-5-sulfonate (DSS) at 0 ppm. The <sup>15</sup>N and <sup>13</sup>C chemical shift values were referenced using the consensus ratio of Ξ of 0.101329118 and 0.251449530 for <sup>15</sup>N/<sup>1</sup>H and <sup>13</sup>C/<sup>1</sup>H, respectively (Wishart and Case, Method. Enzymol. 338, 3-34 (2001))

#### TABLE I

IUPAC/IUBMB RECOMMENDED  $\Xi$  (XI) RATIOS FOR INDIRECT CHEMICAL SHIFT REFERENCING IN BIOMOLECULAR NMR<sup>*a*</sup>

| Nucleus         | Compound               | Ξ Ratio       |
|-----------------|------------------------|---------------|
| <sup>1</sup> H  | DSS                    | 1.000 000 000 |
| <sup>13</sup> C | DSS                    | 0.251 449 530 |
| <sup>15</sup> N | Liquid NH <sub>3</sub> | 0.101 329 118 |
| <sup>19</sup> F | CF <sub>3</sub> COOH   | 0.940 867 196 |
| <sup>31</sup> P | $(CH_3)_3PO_4$         | 0.404 808 636 |
|                 |                        |               |

<sup>*a*</sup> Relative to DSS.

 $\Xi$  ratio (Nucleus-specific frequency ratio: Determine the precise <sup>1</sup>H resonance frequency of DSS then multiply this frequency by  $\Xi$  of a particular nucleus one obtains the exact resonance frequency reference at 0 ppm of that nucleus.



#### Proton chemical shift in some diamagnetic structures (12 ppm)



# Chemical shift ranges of <sup>15</sup>N (800 ppm)



In biomacromolecular NMR one observe mostly amide nitrogen (-<sup>15</sup>NH-) and side chain amino nitrogens (Arg and Lys) (-<sup>15</sup>NH<sub>3</sub> or -<sup>15</sup>NH<sub>2</sub>). Amide nitrogen resonates at ~100 -140 ppm range and 80 ppm for NH<sub>2</sub>. Notice, amide nitrogen shift spans ~ 40 ppm. Example of 1D : 1H spectra, 13C spectra of Codeine C<sub>18</sub>H<sub>21</sub>NO<sub>3</sub>, MW= 299.4



### 2. J-coupling (More than one spins)

Nuclei which are connected by chemical bonds form a coupled system and cause splitting on the energy level, thus cause resonance splitting This is called spin-spin coupling or J coupling.



> Energy diagram of two spin system: Each spin now seems to has two energy 'sub-levels' depending on the state of the spin it is coupled to:



The magnitude of the separation is called *coupling constant* (J) and has units of Hz.

# Number of lines

N neighboring spins: split into N + 1 lines



2. One neighboring spins: - CH - CH - $\uparrow \uparrow \uparrow \downarrow \longrightarrow$ 

3. Two neighboring spins:  $-CH_2 - CH -$ 

Use of J-coupling for structure determination (Dihedral angle)



> From coupling constant (J) one can determine the dihedral angles from the following Karplus equations, where  ${}^{3}J_{NH\alpha}$  is the coupling constant between  $C_{\alpha}H$  - NH.

$${}^{3}J_{NH\alpha} = 6.4\cos^{2}(\phi - 60) - 1.4\cos(\phi - 60) + 1.9$$
  
$${}^{3}J_{\alpha\beta1} = 9.5\cos^{2}(\chi_{1} - 120) - 1.6\cos(\chi_{1} - 120) + 1.8$$
  
$${}^{3}J_{\alpha\beta2} = 9.5\cos^{2}\chi_{1} - 1.6\cos\chi_{1} + 1.8$$



>  ${}^{3}J_{NH\alpha} = 4 - 11 \text{ Hz} \text{ depends on secondary structure.}$  ${}^{3}J_{NH\alpha} < 6 \text{ Hz} \rightarrow \alpha \text{-helix}; \quad {}^{3}J_{NH\alpha} > 8 \text{ Hz} \rightarrow \beta \text{-stand}$ 

# For through-bond 3D NMR (Magnetization transfer)

- J-coupling of backbone nuclei (Hz)





 $\begin{aligned} \text{XNOE} &= 1 + (d^2/4)(\gamma_H / \gamma_N)[6J(\omega_H + \omega_N) - J(\omega_H - \omega_N)] T_1 \\ \text{where } d &= (\mu_o h \gamma_N \gamma_H / 8\pi^2)(r_{NH}^{-3}), J(\omega) \text{ is the spectral density function} \end{aligned}$ 

→ 1. Distance info: XNOE ∝ r<sup>-6</sup>;
2. Dynamics: XNOE ∝ J (ω)

#### 4. Residual dipolar coupling in partially oriented media

Bicells

Phage



Ø 弦 团 团 例 例 例 函 团 团 Æ 例 团 Ø 例 例 K Ø 团 Ø ₀ 傲 Ø Ø 例 例 ₿ ( ¢ Ø ß Ø Ø 例 ¢

# Dipolar interactions of peptide plane nuclei







### Protein structure



Peptide plane representation (Angular space)



### Strings of Peptide planes



# 4. NMR Relaxation



Spin-lattice relaxation (T<sub>2</sub>) and spin-spin relaxation (T<sub>2</sub>) of nuclear spins. Figure shows the evolution of the magnetization after it has been flipped by  $90^{\circ}$  pulse.

# Applications

# I. Structure:

- Protein structure up to 60 kDa has been reported (easier for < 20 kDa)

- Can observe good protein signal up to 800 kDa.

II. Dynamics (Motion):

- Characterize molecular motion (4th dimension)

# III. Drug screening:

- High throughput (1000 samples per day)
- Atomic details
- Lead discovery.
- IV. Magnetic Resonance Imaging (MRI):
  - V. Metabolomics (Small molecule identification):

#### Determine Protein Structure by NMR







# 2D-NMR Spectrum



### <sup>1</sup>H - <sup>1</sup>H NOESY of RC-RNase



# Homonuclear 2D NMR experiments



COSY v.s. TOCSY spectra (Fingerprint region)



# **COSY** (Fingerprint region)



Isoleucine

See only  $H^N$  and  $H^\alpha$  correlation



N

Η (8.75)

H<sub>3</sub>C

TOCSY (Spin System Identification) RC-RNase 1. J-Coupling:  $HN \rightarrow H_{a} \rightarrow H_{\beta}$  2. Identify Spin System(a.a. type)



- > Observe <sup>15</sup>N spectrum in  $t_1$  and <sup>1</sup>H spectrum in  $t_2$  dimension → Excellent resolution
- > Each peak codes for one amide group ( $^{15}N-^{1}H$ ), i.e. one amino acid.
- > Detect  $^{15}N$  at  $^{1}H$  sensitivity.

<sup>15</sup>N-Heteronculear Single Quantum Spectroscopy (<sup>15</sup>-N HSQC)





### <sup>1</sup>H NMR Spectrum of Thioesterase (pH 3.6, 303K)

Magnetization transfer thru bonds J-coupling of backbone nuclei (Hz)



#### Multi-Dimensional NMR

#### Magnetization transfer thru bonds



3D HNCA



Detect:  ${}^{1}\text{H}^{N}$ ,  ${}^{15}\text{N}$  and  ${}^{13}C_{\alpha}$ 

 $\delta$  = 1/4J<sub>N-CA</sub> = 1/4x10 = 25 ms for optimal detection  $\tau$ = 1/4J<sub>H-N</sub> = 1/4x94 = 2.5 ms



Heteronuclear multidimensional NMR experiments for resonance assignments

Magnetization transfer pathway:

- $^{1}H \rightarrow ^{15}N \rightarrow ^{13}C \rightarrow ^{15}N$
- $\rightarrow$  <sup>1</sup>H  $\rightarrow$  <sup>1</sup>H Detection

→ Detect <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N resonances

Permit sequential correlation of backbone <sup>1</sup>H-<sup>13</sup>C-<sup>15</sup>N resonances !!









### Select a <sup>15</sup>N frequency







- 1. In HNCA experiment the stronger cross peak belongs to its own CA and the weaker one belongs to precedent amino acid.
- 2. Combine HNCA with HN(CO)CA one can assign the CA resonances unambiguously.



- 3. Use several sets of thru-bond 3D experiment one can assign all Backbone resonances.
- 4. Side chain resonances: HCCH-TOCSY, TOCSY-HSQC or NOESY-HSQC.

#### Assignment based on J-correlations







<u>'Λ-CO</u>+

П

iN





Π



IINCAICO [IINCO]





·СА

side chain assignments







 $\phi_1 = x, -x + \text{TPPI}(t_1); \phi_2 = 2(x), 2(-x) + \text{TPPI}(t_2); \phi_{\text{rec}} = x, 2(-x), x, -x, 2(x), -x.$  $\Delta^2 = 3.6 \text{ ms}, \Delta^2 = 2.4 \text{ ms}.$  <sup>15</sup>N-Heteronculear Single Quantum Spectroscopy (<sup>15-N</sup> HSQC)



|            | Residues       |      | Chemical Shift (ppm) |            | hift (ppm) |                                                                         |
|------------|----------------|------|----------------------|------------|------------|-------------------------------------------------------------------------|
|            |                | NH   | Сан                  | СβН        | СүН        | Others                                                                  |
|            | PE1            | 8 04 | 3.89                 | 3 31 3 21  |            | N8H- 7.82                                                               |
| Accionment | Trn3           | 9.36 | 5.54                 | 3.17. 3.04 |            | NEH 10.41: 2H 7.14: 4H 8.42: 5H 6.87: 6H 7.37: 7H 7.46                  |
| Assignment | Ala4           | 8.72 | 3.80                 | 1.40       |            |                                                                         |
| Tabla      | Thr5           | 8.55 | 4.00                 | 3.90       | 1.31       |                                                                         |
| Iadie      | Phe6           | 8.83 | 4.34                 | 3.62, 3.20 |            | C <sub>2,6</sub> H 7.20; C <sub>3,5</sub> H 7.01; C <sub>4</sub> H 6.83 |
|            | Gln7           | 8.39 | 3.55                 | 1.30, 1.67 | 1.93, 1.85 |                                                                         |
|            | GIn8           | 8 22 | 3.91                 | 2.20, 2.03 | 2.43, 2.43 |                                                                         |
|            | His10          | 7.90 | 4.65                 | 2.75. 2.19 |            | CE1H 8.52: Co3H 6.59                                                    |
|            | Ile11          | 8.50 | 5.02                 | 2.03, 1.72 | 1.13       | 0.95, 0.95                                                              |
|            | Ile12          | 8.72 | 4.81                 | 1.83       | 1.35, 1.35 | 0.86                                                                    |
|            | Asn13          | 8.19 | 4.90                 | 2.88, 2.88 |            |                                                                         |
|            | Thr14          | 7.14 | 4.84                 | 4.17       | 1.11       |                                                                         |
|            | Pro15          |      | 4.35                 | 2.23, 2.23 | 1.96, 1.96 | CδH <sub>2</sub> 3.84, 3.67                                             |
|            | Ile16          | 7.70 | 4.01                 | 1.76       | 1.32, 1.03 | 0.71, 0.62                                                              |
|            | lie1/          | 8.26 | 4.15                 | 1.42       |            | 0.71, 0.49<br>NSH- 7.54, 7.04                                           |
|            | Cyc10          | 9.51 | 4.06                 | 281 243    |            | NOH2 7.54, 7.04                                                         |
|            | Asn20          | 8.19 | 4.48                 | 2.98 2.98  |            | •                                                                       |
|            | Thr21          | 7.39 | 4.30                 | 4.18       | 1.23       |                                                                         |
|            | Ile22          | 7.96 | 3.99                 | 1.53       |            | 0.64                                                                    |
|            | Met23          | 7.19 | 4.56                 | 1.39, 0.51 | 2.17, 1.70 |                                                                         |
|            | Asp24          | 7.16 | 4.94                 | 3.12. 2.63 |            |                                                                         |
|            | Asn25          | 8.03 | 4.69                 | 2.85, 2.66 |            | NSUL 7 46 ( 0)                                                          |
|            | Asn20          | 8.94 | 4.30                 | 2.87, 2.82 |            | NOH2 7.45, 0.81                                                         |
|            | Tyr28          | 7.80 | 4.76                 | 3 51 3 13  |            | $C_{2,2}H = 6.96$ $C_{2,2}H = 6.54$                                     |
|            | IIe29          | 7.35 | 4.51                 | 2.14       |            | 0.69                                                                    |
|            | Val30          | 8.53 | 4.40                 | 2.04       | 1.01, 1.01 | 0.07                                                                    |
|            | Gly31          | 9.36 | 3.93, 3.93           |            |            |                                                                         |
|            | Gly32          | 8.34 | 4.20, 3.56           |            |            |                                                                         |
|            | Gln33          | 7.64 | 4.85                 | 2.09, 1.97 | 2.35, 2.35 |                                                                         |
|            | Cys34          | 8.43 | 3.83                 | 2.40, 1.08 |            |                                                                         |
|            | Arg36          | 9.02 | 3.87                 | 2 08 1 90  | 1 79 1 65  | CoH- 3 38 3 23. NeH 7 37                                                |
|            | Val37          | 7.71 | 5.41                 | 2.01       | 0.96 0.91  | Con2 5.56, 5.25, Nen 7.57                                               |
|            | Asn38          | 8.41 | 4.84                 | 2.21, 1.92 | 0.50, 0.51 |                                                                         |
|            | Thr39          | 8.80 | 4.46                 |            |            |                                                                         |
|            | Phe40          | 9.38 | 4.77                 | 3.07, 2.71 |            | C <sub>2,6</sub> H 7.08; C <sub>3,5</sub> H 6.93; C <sub>4</sub> H 7.03 |
|            | Ile41          | 9.36 | 4.32                 | 1.74       | 0.78       | 0.70, 0.58                                                              |
|            | Ile42          | 8.68 | 4.89                 | 1.96       | 1.27, 1.27 | 0.74, 0.62                                                              |
|            | Ser43          | 8.10 | 4.05                 | 4.23, 3.20 |            |                                                                         |
|            | Ala45          | 9.34 | 4.32                 | 1.77       |            |                                                                         |
|            | Thr46          | 8.28 | 4.01                 | 4.24       | 0.98       |                                                                         |
|            | Thr47          | 7.47 | 4.08                 | 4.41       | 1.42       |                                                                         |
|            | Val48          | 7.47 | 3.83                 | 2.40       | 1.09, 1.06 |                                                                         |
|            | Lys49          | 8.56 | 3.07                 | 1.80, 1.68 | 1.03, 0.60 | CoH <sub>2</sub> 1.32, 1.32; CeH <sub>2</sub> 2.59, 2.28                |
|            | Ala50          | 7.28 | 4.05                 | 1.54       | 1.00       | 0.79                                                                    |
|            | Lie51          | 7.08 | 3.77                 | 2.85 2.01  | 1.00       | 0.78                                                                    |
|            | Cys52<br>Thr53 | 7.34 | 3.75                 | 4.01       | 1 20       |                                                                         |
|            | Glv54          | 9.24 | 4.08, 3.54           | 4.01       | 1.20       |                                                                         |
|            | Val55          | 8.05 | 4.04                 | 1.87       | 0.79, 0.79 |                                                                         |

#### Table 1. <sup>1</sup>H chemical shifts for RC-RNase in 90%/10% H<sub>2</sub>O/D<sub>2</sub>O at 310 K, pH 3.5, taking TSP resonance (0.00 ppm) as a reference.

#### pH-dependent of proton exchange rates



**Figure 2.3.** Logarithmic plots versus pH of approximate exchange rate constants  $k_{intr}$  computed with Eq. (2.2) for solvent accessible, labile protons of polypeptides in H<sub>2</sub>O solution at 25°C. Broken lines represent lower limits for  $k_{intr}$  in situations where p $K_a$  data were available either only for the base-catalyzed regime, or only for the acid catalysis. The individual curves are identified with the proton types and, where applicable, the residues types (Im stands for imidazole ring NH, Gua for guanidinium NH, bb for backbone) (adapted from Wüthrich and Wagner, 1979).

#### Nucleotide NH exchange rates



**Figure 2.4.** Logarithmic plots versus pH of approximate exchange rate constants  $k_{intr}$  for solvent accessible, labile base protons of polynucleotides in H<sub>2</sub>O solution at 25°C. For all additional labile protons in polynucleotides (Fig. 2.2, Table 2.5),  $k_{intr} \ge 10^6 \text{ min}^{-1}$  over the entire pH range.